
1

Omni-swarm: A Decentralized Omnidirectional
Visual-Inertial-UWB State Estimation System for

Aerial Swarms
Hao Xu, Yichen Zhang, Boyu Zhou, Luqi Wang, Xinjie Yao, Guotao Meng, Shaojie Shen

Abstract—Decentralized state estimation is one of the most
fundamental components of autonomous aerial swarm systems
in GPS-denied areas yet it still remains a highly challenging
research topic. Omni-swarm, a decentralized omnidirectional
visual-inertial-UWB state estimation system for aerial swarms,
is proposed in this paper to address this research niche. To solve
the issues of observability, complicated initialization, insufficient
accuracy, and lack of global consistency, we introduce an om-
nidirectional perception front-end in Omni-swarm. It consists
of stereo wide-FoV cameras and ultra-wideband sensors, visual-
inertial odometry, multi-drone map-based localization, and visual
drone tracking algorithms. The measurements from the front-
end are fused with graph-based optimization in the back-end.
The proposed method achieves centimeter-level relative state
estimation accuracy while guaranteeing global consistency in the
aerial swarm, as evidenced by the experimental results. Moreover,
supported by Omni-swarm, inter-drone collision avoidance can
be accomplished without any external devices, demonstrating the
potential of Omni-swarm as the foundation of autonomous aerial
swarms.

Index Terms—Swarms, aerial systems: perception and auton-
omy, multi-robot systems, sensor fusion

I. INTRODUCTION

FOR any aerial robotics system, the estimation of states,
including positions and attitudes, is crucial. The estima-

tion system lays a solid foundations for higher-level functions,
such as path planning [1] and mapping [2]. The state esti-
mation problems for single-drone systems are currently well-
addressed through approaches such as visual-inertial odometry
(VIO) [3]–[5] and LiDAR odometry [6], [7]. However, when
we look beyond a single-drone to multiple drones working as
an aerial swarm, the problem becomes much more compli-
cated. In a swarm, each drone needs to estimate its ego state
and also obtain the relative poses of other drones.

To date, the vast majority of aerial swarm researchers have
adopted external devices, such as motion capture systems [8],
ultra-wideband (UWB) systems with anchors [9] and GPS
[10], and RTK-GPS [11] systems, to provide state estimations,

Manuscript received March 31, 2021; revised December 12, 2021 and
March 25, 2022; accepted May 9, 2022. This paper was recommended for
publication by Editor-in-Chief L. Kevin and Editor R. Paolo upon evaluation
of the reviewers’ comments. This work was supported by the HKUST
Postgraduate Studentship, UGC RMGS20EG20 and HDJI lab. (Corresponding
author: Hao Xu.)

All authors are with the Department of Electronic and Computer
Engineering, Hong Kong University of Science and Technology, Hong Kong,
China. {hxubc, yzhangec, bzhouai, lxwang, gmeng,
xyaoab}@connect.ust.hk, eeshaojie@ust.hk

Fig. 1: Indoor aerial swarm formation flight with four drones. The
customized drone platforms are circled.

which significantly limits the application of aerial swarms in
the real world. Although motion capture systems and UWB
modules with anchors can work in indoor environments with
decent accuracy, they are centralized systems and require
bulky external devices, meaning that they are susceptible
to losing the central devices and are challenging to deploy.
A requirement of a practical swarm application is simple
deployment, which such approaches typically fail to meet.

The decentralized scheme of swarm robots is becoming
popular in swarm robotics research [12], [12]–[17] because
of its significant advantages. A robot swarm with this scheme
does not require all robots to have stable communication with a
central computer, which makes it more flexible in real-world
environments where communication is limited. Additionally,
each robot can act largely independently from the remainder
of the team, making the whole system more fault-tolerant to
single-point failure. To build a fully autonomous decentralized
multi-robot system (multi-aerial-robot swarm, also known as
an aerial swarm), a key problem is how to achieve relative state
estimation in a decentralized fashion. The primary motivation
of this paper is to solve this fundamental problem with
additional global consistency of the estimated states, laying
a solid foundation for a decentralized aerial swarm.

Recently, researchers have started to develop approaches
to perform decentralized relative state estimation on aerial
swarms. One of the most straightforward ideas is to utilize
visual object detection to detect the drones in the aerial
swarm to estimate the relative state [18]–[21]. Fusing distance
measurements from the UWB and odometry (usually VIO)
[18]–[23] is another viable approach, along with estimating
relative states from common environment features captured by
the drones [24], [25] or extracting relative states from sparse
maps built by the aerial swarms [16], [17], [26], [27].

2

However, the practicability of these methods is limited by
some serious issues, as follows,

1) Observability issue caused by a restricted field of view
(FoV). For visual-drone-detection-based methods [18],
[22], [23], the relative states are observable only when
others drones are in the drone’s FoV.

2) Complicated initialization. UWB-odometry fusion meth-
ods [18]–[21] require large motions to initialize the
system. The complex initialization procedure may cause
severe safety issues and even crashes.

3) Insufficient accuracy. The estimated position errors in
previous works [19]–[21] are generally around 20 cm–
50 cm, meaning that these swarm systems can scarcely
be adopted for use in confined indoor spaces or close
formation scenarios.

4) Lack of global consistency. For all the current relative
state estimation methods, the estimated poses drift and
the ego state estimation cause consistency issues. Global
consistency becomes especially important when we ex-
pect to build global maps based on state estimation.

To address the challenges, in this paper, we extend our
previous method [18] and propose Omni-swarm: a decentral-
ized omnidirectional visual-inertial-UWB state estimation
system for aerial swarms, which combines the advantages
of the UWB-odometry fusion method [18]–[23], visual-object-
detection-based methods [18], [22], [23], and map-based meth-
ods [16], [17], [24], [25], [28], [29].

The most important contribution to address the aforemen-
tioned issues is the introduction of an omnidirectional per-
ception front-end. The front-end includes the hardware cap-
turing omnidirectional visual information and the algorithms
processing this information. Specifically, we use two fisheye
cameras with a wide-FoV (up to 235◦) to achieve omnidi-
rectional observation of the surrounding area. We develop
VINS-Fisheye as the ego-motion estimator of the front-end,
which is a VIO state estimator using the measurements from
stereo wide-FoV fisheye cameras for ego-motion estimation.
Multi-drone map-based localization (MDML) based on real-
time-generated sparse maps is further introduced to ensure
the global consistency of state estimation and to achieve fast
initialization. Finally, a visual drone tracking module detects
and tracks the other drones to provide accurate relative pose
estimation of the tracked targets. In addition to omnidirectional
visual information, we also use UWB sensors to measure the
relative distance between drones. This measurement can also
be considered as omnidirectional.

As the back-end of the state estimation, we adopt the graph-
based optimization method, which fuses the measurements
from the front-end in real-time to estimate the states of the
swarm with high accuracy. In the back-end, we adopt the state-
of-the-art outlier rejection method to reduce the errors from
the front-end to achieve high-accuracy and robustness.

Omni-swarm is designed to be decentralized, it runs on
each drone’s onboard computer individually instead of using
a central server. Differing from previous work on relative-
state estimation, which only work in a line-of-sight situation
[18]–[22], Omni-swarm can estimate the state of the swarm
when another drone is in non-line-of-sight if the same place

has been visited. This capability is given by MDML. Another
advantage over previous works [18]–[22] that MDML brings
the global consistency; the long-term drifting of the ego state
is eliminated by the map-based localization and thus guarantee
global consistency of the estimation results. Omni-swarm also
inherits the high accuracy of our previous work [18], which
has a high relative localization accuracy compared to other
related works [19]–[22].

In addition, the complex initialization problem is solved
in Omni-swarm by introducing various system initialization
methods, including map-based initialization and visual drone
detection tracking initialization. Another Omni-swarm im-
provement that helps with practical applications is its plug-
and-play feature, based on our newly introduced initialization
methods, Omni-swarm allows the temporary joining or exiting
of drones. Finally, Omni-swarm has redundancy in the infor-
mation shared among the swarm and computations performed
by the drones, which brings robustness to possible temporary
signal loss and partial sensor failures.

To verify the above features of Omni-swarm, we per-
form comprehensive experiments in simulation and real-world
experiments. Moreover, we design an inter-drone collision
avoidance experiment to verify Omni-swarm under realistic
conditions. The main contributions of this paper are:

1) Omni-swarm, a decentralized omnidirectional visual-
inertial-UWB swarm state estimation system. Extensive
experiments are conducted to validate Omni-swarm.

2) Open-source releases of the software and the custom
datasets have been made public1.

In our previous work [18], we proposed a two-stage visual-
inertial-UWB fusion method for relative state estimation. The
method has the advantages of both visual-object-detection-
based relative state estimation [22], [23] and UWB-odometry
fusion relative state estimation [19], [20]. However, global
consistency is absent. Also, the method still suffers from the
same complicated initialization issue and the observability
issue caused by the restricted FoV, as with other related meth-
ods. Although the previous method works in a non-line-of-
sight case, the relative estimation accuracy will deteriorate. In
extreme situations, the relative state can become unobservable.
For example, drones fly parallelly side-by-side. In this paper,
the initialization and global consistency issues are addressed
by introducing multi-drone map-based localization, and the
observability is fixed by using omnidirectional cameras.

In this paper, related works are discussed in Sect. II. Omni-
swarm is briefly introduced in Sect. III, and a clear definition
of the state estimation problem is defined in Sect.III-B. The
front-end of Omni-swarm is presented in Sect. IV, while the
back-end is introduced in Sect. V. Experimental results are
discussed in Sect. VII. Finally, we conclude the paper in Sect.
VIII and introduce potential future works.

II. RELATED WORKS

A. Visual inertial odometry on Aerial Swarm
In order to overcome the state estimation issues in multiple

environments, including GPS-denied areas, visual-inertial si-

1https://github.com/HKUST-Aerial-Robotics/Omni-swarm

3

multaneous localization and mapping (visual-inertial SLAM)
[30]–[32] and visual-inertial odometry (VIO) [3], [5], [33],
[34] are widely adopted on single drone systems. These
visual inertial systems fuse the visual images and the inertial
measurement unit (IMU) data together to estimate ego-motion
without requiring external devices. Although VIO systems
can be effortlessly adopted in various environments without
cumbersome external devices and they are directly utilized
by researchers on swarms for formation flights [35], [36],
the state estimations suffer from severe drift, which can be
detrimental to multi-drone systems. Specifically, the different
drifts of individual drones in an aerial swarm induce distinct
position estimations at the same location, possibly causing
fatal crashes in collaborative missions in the absence of other
correction methods.

B. Relative Swarm State Estimation

One of the most effective methods to compensate for the
drift of VIO in aerial swarms is to incorporate the relative
state estimation between the drones. The existing relative state
estimation methods can generally be divided into the follow-
ing three categories: 1) UWB-odometry fusion relative state
estimation methods [18]–[21], [37], 2) visual-object-detection-
based relative state estimation methods [18], [22], [23], and
3) environment-feature-based relative state estimation methods
[24], [25].

However, all of these methods have drawbacks in real appli-
cation scenarios. The previous UWB-odometry based methods
[19]–[21] fuse the ego-motion estimated by VIO and UWB
distance measurements to achieve relative state estimation.
These methods can only estimate relative localization in line-
of-sight situations and provide merely a meter to decimeter
level of accuracy. Even in line-of-sight situations, the rel-
ative localization can become unobservable in some cases,
e.g., parallel flight tasks [38]. Furthermore, the initialization
requires a certain amount of motion, usually several meters.
Both of these drawbacks substantially limit the practicability
of the UWB-visual fusion methods in feature-rich narrow
environments. A viable idea to address observability issue
was proposed by Nguyen et al. [38]. Briefly, a drone in the
swarm keeps an irregular motion to guarantee observability
of the relative state estimation, which may present safety
issues and limit the aerial swarm’s cooperation. In Omni-
swarm, the observability issue can be solved by visual drone
tracking and map-based localization while the formation is
flying. In addition, by introducing map-based localization, we
can achieve fast initialization without motion.

Visual-object-detection-based methods [18], [22], [23] are
capable of delivering centimeter-level accuracy. However, the
accuracy of these methods in a swarm of drones is highly
dependent on the distance the drones are from each other. Data
association from the detection results to the corresponding
drone ID is also an issue when all the drones appear identical.
A coupled-probabilistic-data-association-filter (CPDAF)-based
approach is proposed in [23] to associate the detection result
and estimate the relative state. Nevertheless, the visibility
requirement between the drones and the limited FoV of their

cameras restrict the swarm formation and the distance between
drones for stable state estimation. In this paper, the FoV issue
is addressed by introducing an omnidirectional front-end. Due
to the UWB measurements, the proposed method can still
estimate the relative state when the distances between the
drones are too far for them to detect each other.

Finally, all the aforementioned methods are limited to
relative localization, and global consistency of the estimated
states cannot be guaranteed. In this paper, global consistency
is guaranteed by introducing map-based localization. This will
also help us with global mapping in our future work.

C. Environmental-Features-based Method and Collaborative
Simultaneous Localization and Mapping

Environment-feature-based methods [24], [25] rely on mul-
tiple drones’ common environmental texture features to esti-
mate the relative poses. The methods require sufficient over-
lapped features between the view of the drones, limiting the
swarm formation and heading, while only working in feature-
rich environments.

Collaborative simultaneous localization and mapping
(CSLAM) methods [14]–[17], [26]–[29] focus on sparse and
dense mapping utilizing the sensors on the multi-robot system,
and can estimate the states of aerial swarms. DDF-SAM
[26], [27] presents a landmark-based back-end implementation
without providing the front-end and data association between
features among the swarm. Choudhary et al. [16] utilized
objects as landmarks, requiring known objects and their 3D
models in the scene, which limits the method’s real-world
practicability. DOOR-SLAM [17], [28], [29] achieves localiza-
tion of robots using VIO incorporating loop closure detection
(also known as map-based localization in this paper). [16],
[17], [28], [29] estimate the state with the pose graph opti-
mization (PGO). However, the accuracy of relative localization
is crucial for cooperation inside the aerial swarm, and this
has not been featured in these papers. Generally speaking, the
PGO methods are not accurate because they do not directly use
the features for relative localization. Zhu et. al. [15] propose
a distributed visual-inertial fusion for cooperative localization
and reach centimeter-level accuracy. In [15] the environmental
features are tightly coupled in the cooperative localization.

Due to the nature of map-based localization, the above
CSLAM methods are limited to feature-rich environments and
are also limited by the camera FoV. In this paper, with an
omnidirectional front-end and UWB measurements, Omni-
swarm will not be limited by the FoV and can still estimate
relative state without rich common environmental features.

D. Visual-inertial-UWB Fusion with Global Consistency

Some of the works mentioned as being UWB-odometry
fusion [18], [20], [21] can be considered to be visual-inertial-
UWB fusion (also known as visual-inertial-range fusion, or
VIR fusion). However, global consistency is absent in these
works. Unlike these relative localization methods, a class of
works [18], [20], [21] uses VIR fusion to achieve global
localization by placing a fixed UWB anchor in the envi-
ronment. With the help of this anchor, these methods can

4

Fig. 2: The system architecture of Omni-swarm. The data from the onboard sensors are processed, and then broadcast to all the other
drones. The swarm state estimation on each of the onboard computers collects both onboard and broadcast information, including the relative
distance from the UWB modules, the VIO, map-based measurements, and the detection results, and performs optimization prediction to
obtain real-time relative state estimations. The estimation results are then sent back to facilitate the matching procedure of detection and
tracking and meanwhile serve the planning and control. The ground station obtains the drones’ real-time information to monitor the flight
status and concurrently sends the commands to the drones. All the communications between the devices are through UWB broadcast.

effectively eliminate the drift of odometry. The drawback of
these methods is that they require additional infrastructure to
be placed on the ground and they maintain global consistency
only when drones are in the line of the sight of the anchors,
limiting their real-world practical value. In this paper, the
proposed Omni-swarm guarantees global consistency without
any external infrastructure, which is more flexible in real-world
applications.

III. SYSTEM OVERVIEW
A. Notation

To aid understanding of the proposed system, the notations
are defined below.

NOMENCLATURE

(̂·) The estimated state.
dti,j Distance between drone i and drone j at time t.
F tk The keyframe of the drone k at time t, which contains

the 4D pose P̂vk t
i to be estimated, a few virtual camera

keyframes Kc t
k and other essential information of the

drone.
Kc t
k The keyframe of drone k’s virtual camera c at time

t, which contains the global descriptor, local features,
virtual camera’s extrinsic and other essential informa-
tion of the drone. The virtual camera c is cropped
from the raw fisheye camera.

SF tk Equal to [F t1 F t2 ... F tn] . The swarm keyframe of the
drone k at time t, which contains n keyframes.

Gk The graph built on drone k for state estimation.
(·)R The rotation part of the transformation matrix.
(·)P The corresponding 4-DoF transformation matrix.
(·)T The corresponding 6-DoF transformation matrix.
(·)X The translation part of the transformation matrix.
zt(·) The measurement data at time t.
(·)ψ The yaw angle of the rotation matrix.
(F)f The global descriptor of the keyframe F .
(K)F The corresponding keyframe F tk of virtual camera

keyframe K.

(F)lf The local descriptors of the features of the keyframe
F .

‖(·)‖ Euclidean norm of (·) if (·) is a vector or matrix;
otherwise if · is a set, ‖(·)‖ is its size.

‖(·)‖Σ Mahalanobis norm of ·.
D The set of all existing drones, including the currently

unavailable drones due to loss of communication, user
poweroff and accident.

Dka The set of all available drones for drone k.
Dke The set of all estimated drones of drone k’s state

estimation.
Dku The set of all uninitialized drones of drone k’s state

estimation, where Dku = Dka −Dke .
(·)bk t

i State of drone i in drone k’s body frame. For simplic-
ity, the pose in the body frame is defined as a 4-DoF
pose, i.e., (·)bk t

i = (Pvk t
k)−1 (·)vk t

i.
Di The i th drone.

(·)vk t
i State of drone i in drone i’s local frame.

Pvk t
i Equal to

[
Rz(ψvk t

i) Xvk t
i

0 1

]
. The pose of drone i in

drone k’s local frame at time t. For simplicity, the no-
tation of Ptk represents Pvk t

k. Rvk
z(ψvk t

i) represents
the rotation matrix rotated over the z axis with angle
ψvk t
i = (Rvk t

i)ψ .

Tvk t
i Equal to

[
Rvk t
i Xvk t

i

0 1

]
. The 6-DoF pose of drone i

in drone k’s local frame at time t. Rvk t
i represents the

rotation matrix
P̃tk, T̃

t
k The 4-DoF and 6-DoF pose, respectively, of drone k

in its local frame, as estimated by VIO, which drifts
through time. This pose is initialized to an identity
matrix after the drone start-up, which also gives the
origin and the axis of the local frame.

Xvk t
i Equal to

[
xvk t
i, yvk t

i , zvk t
i

]T
. The translation part of

Pvk t
i.

δPti The transformation matrix from time t − 1 to t of
drone i from the VIO result, i.e., Pti = Pt−1

i δPti.

Suppose our aerial swarm contains up to n drones. A

5

drone with ID i, will be denoted as drone i or Di, where
i ∈ D, D = {1, 2, 3, ...n}. Although Omni-swarm runs
independently on each drone, to simplify the discussion, we
discuss drone k’s Omni-swarm by default in the following
unless otherwise stated. We say a drone i is available to drone
k when it satisfies following conditions: 1) drone i’s Omni-
swarm and ego-motion state estimation (VIO) work properly;
2) drone i and drone k have a stable network connection. The
set of all available drones for drone k is denoted as Dka , which
also contains the drone itself.

B. State Estimation Problem of Aerial Swarm

For an aerial swarm that contains a maximum of n homoge-
neous drones, the state estimation problem can be represented
as follows. For every drone k ∈ D, estimate the 6-DOF pose
Tvk t
i for every drone i ∈ Dka at time t in drone k’s local

frame. The state estimation problem for drone k can be split
into two parts:

1) Estimating the ego-motion state of drone k in a local
frame, i.e., T̂t

k.
2) Estimating the state of any other arbitrary drone i, i.e.,

T̂vk t
i, and 4-DoF relative state P̂bk t

i.
The VIO utilizes the gravitational acceleration measured by

the IMU to help extract the roll and pitch angles in the attitude.
Because the gravity acceleration is consistent among drones,
with the estimation of the 4-DoF pose P̂vk t

i and relative pose
P̂bk t
i, we are able to combine the drone’s own VIO T̃t

i to
obtain the 6-DoF pose:

T̂vk t
i =

[
Rz

(
(P̂vk t

i)ψ − (T̃t
i)ψ

)
R̃t
i (P̂vk t

i)X

0 1

]
, (1)

where Rz

(
(P̂vk t

i)ψ − (T̃t
i)ψ

)
eliminates the yaw drift of the

rotation R̃t
i estimated by the VIO, where Rz(ψ) is the rotation

matrix rotated over the z axis with angle ψ.

C. Global Consistency of the State Estimation

In SLAM research [39], [40], global consistency of state
estimation represents that the estimate results are drift-free,
e.g., the P̂bk t

i do not drift along with the robot move.
In our previous work [18], we focused on estimating P̂bk t

i,
which is the relative state estimation for the aerial swarm.
The ego-motion was directly estimated by the VIO; i.e.,
T̂t
k = T̃t

k was assumed. However, the VIO is concerned
with local accuracy and suffers from long-term drifting. In this
paper, by adopting the map-based localization method, we can
estimate the state of the aerial swarm with guaranteed global
consistency, which means both T̂vk t

k and P̂bk t
i are estimated

by the proposed state estimator for the aerial swarm.

D. Observability and Initialization

For all state estimation systems, initialization is critical,
especially for Omni-swarm. The necessary condition for ini-
tializing the state estimation is that observability must be
satisfied. Initialization with improper states and insufficient

observability are likely to direct Omni-swarm to incorrect state
estimation.

Compared to previous works, a major highlight of the
system proposed in this paper is the extended observability,
which is important for its practical application. First, ego-
motion estimation, namely the VIO in our system, is always
assumed to be available for drones in an aerial swarm since
it is the fundamental module for stable flight. Therefore, the
Omni-swarm observability problem is focused on the relative
pose. The observability of drone i’s states estimated by drone
k can be classified into two levels: 1) 3-DoF observable: The
position Xvk t

i is observable, and 2) 6-DoF observable: The
6-DoF pose Tvk t

i. When the 4-DoF pose Pvk t
i and VIO T̃t

i

are observable, Tvk t
i will also be observable, following Eq.

(1).
However, the observability of each drone in a swarm

running Omni-swarm may be different. Thus, to provide the
ability of plug-and-play, we track the observability of each
available drone in the swarm and only initialize and estimate
the state of observable drones. We use set Dku to describe all
the uninitialized drones and the set Dke to describe all the
initialized (estimated) drones. The details of the observability
and initialization of Omni-swarm will be stated in Sect. V-D
and Sect. V-E.

E. System Architecture

As shown in Fig. 2, our proposed method is divided into
a front-end and a back-end, and Omni-swarm independently
runs on each drone in the swarm. In the front-end, the raw
measurements are pre-processed by an ego-motion estimator
(VIO), visual drone tracking module (VDT), and multi-drone
map-based localization module (MDML). In the back-end,
graph-based optimization is utilized for state estimation. After
this, we propagate the real-time state of the aerial swarm with
the latest VIO and the estimated states.

F. Graph-based Optimization

We adopt a 4-DoF graph-based optimization for the swarm
state estimation in the back-end of Omni-swarm. Suppose SF t
denotes the swarm keyframe, which contains the keyframes
{F t1 ... F tn} of n drones at time t.

The graph G contains m swarm keyframes, the keyframes
{F t1 ... F tmn } of these swarm keyframes serve as the vertices
of G and the measurements serve as edges to connect these
keyframes:

G = {SF1, SF2, SF3... SFm,
... zL

t0→t1
i→j ... zD

t2
k→l... zd

t3
p,q}.

An illustration of G can be found in Fig. 3a.
In our graph-based optimization, we use maximum a poste-

riori (MAP) inference for the factor graph based on non-linear
least-squares optimization [41] for swarm state estimation. A
factor graph Gf is constructed from graph G in our back-
end after the outlier rejection module filters out the outlier
measurements in the graph G. As shown in Fig. 3b, the poses
of the vertices in G serve as the variables in Gf , and the

6

(a) (b)

Fig. 3: A demonstration of measurements and corresponding factor graph in the graph-based optimization. a) Measurements involved in the
graph-based optimization, including the UWB measurements (green), the VIO measurements (blue arrow) and the map-based factor (yellow).
The yellow stars represent the landmarks of the sparse map, and the map-based factors are detected from these landmarks. b) Factor graph
for swarm state estimation. The poses are connected by ego-motion factors, distance factors, visual detection factors and map-based factors.

variables are connected by four types of factors, which are
built from the measurements of G:
• Ego-motion factor: Each pose is connected to the previous

pose of the same drone by an ego-motion factor, which
represents the 4-DoF relative pose ztδPj

from the previous
keyframe. This factor smoothes the state estimation and
provides local accuracy.

• Map-based factor: The poses are connected by the corre-
sponding map-based factors, which represent the 4-DoF
relative poses zL

t0→t1
i→j from the keyframe F t0i to F t1j

to ensure global consistency and provide relative state
estimation.

• Distance factor: The poses at one timestamp are con-
nected to each other by distance factors, which are
the distance measurement ztdi,j measured by UWB for
relative state estimation.

• Visual detection factor: The poses are connected by a
visual detection factor zD

t0
k→j if one drone successfully

detects another drone in the visual drone tracking module.
This factor stands for accurate relative state estimation.

In the following discussions, we will first introduce these
measurements and factors and then give the optimization
problem for state estimation from the factor graph Gf .

IV. FRONT-END: OMNIDIRECTIONAL PERCEPTION SYSTEM
AND MEASUREMENT MODELING

A. Omnidirectional Visual Inertial Odometry

To achieve omnidirectional visual perception, Omni-swarm
adopts two 235-degree FoV fisheye cameras to cover all the
surrounding directions, as shown in Fig. 4c. Based on previous
works on omnidirectional VIO [3], [42], [43], we develop
VINS-Fisheye2, which is an omnidirectional visual-inertial
navigation system derived from VINS-Fusion 3. VINS-Fisheye
uses an IMU and previously mentioned stereo fisheye cameras
to estimate ego-motion.

Because of the massive distortion of the fisheye cameras,
it is hard to directly apply the existing visual algorithms to
the raw image data produced by them. As an alternative, we
reproject the raw image captured by a fisheye camera into five
distortion-free images for later algorithms, which follows the

2https://github.com/HKUST-Aerial-Robotics/VINS-Fisheye
3https://github.com/HKUST-Aerial-Robotics/VINS-Fusion

pipeline proposed in [42] and [43]. An example of a raw image
and processed distortion-free images is shown in Fig. 4d. After
reprojecting the raw fisheye images, VIO will be extracted
based on these distortion-free images to provide real-time local
pose and velocity estimation. Due to the long-term drifting of
the VIO, instead of directly fusing the original odometry, we
fuse the 4-DoF relative pose extracted from the VIO in the
back-end, which can be modeled as

ztδPi
= (P̃t−1

i)−1(P̃ti) = (Pt−1
i)−1(Pti) + nvio, (2)

where the noise of the relative pose is assumed as Gaussian,
nvio ∼ N (0, σ2

vio).
The VIO keyframes contain the distortion-free images

generated from the fisheye stereo cameras and the external
parameters of the camera, and the real-time pose estimation is
utilized for further processing to avoid redundant computation.

B. Visual Drone Tracking Module

In Omni-swarm, we introduce a visual drone tracking
(VDT) module for visual tracking and relative pose estimation
of other drones in the swarm. VDT uses visual object tracking
techniques to keep tracking all the drone targets it detects. A
drone target tracked by VDT is recorded as a visual target
file VTF i∗ in the module, where i∗ ∈ {1∗, 2∗, 3∗...} is its ID
inside VDT, and VTF i∗ .d is the drone that tracks this visual
target file. A visual target file VTF i∗ can be anonymous, i.e.,
its drone ID is unknown, or identified, i.e., its drone ID has
been successfully associated.

Alg. 1 demonstrates the algorithm of VDT, which will be
described in detail in this section. VDT starts by detecting the
drones in the image using a visual object detector. A drone de-
tected by this detector creates a visual target candidate VTCi∗ ,
which may create a visual target file or update a visual target
file in subsequent algorithms. VDT will attempt to associate
the visual target candidates with the drones observed by the
state estimation and visual target files to identify its drone ID
and VDT ID. However, this process may not be successful,
either because the system is not properly initialized or because
the VTCi∗ is a false target. Visual target candidates that are
not correctly matched to a drone will create anonymous visual
target files in the subsequent algorithms. Finally, we use a 6-
DoF pose estimator for relative pose estimation of these visual
target files.

7

(a) (b) (c)

(d)
Fig. 4: (a): The raw image of the fisheye camera. (b): The extracted distortion-free upward-facing view. (c): This figure illuminates the
available FoV for Omni-swarm. The blue and green areas denote the fisheye cameras’ coverage, which is omnidirectional. The pink area
denotes the dead zone. The green area denotes the stereo coverage, which is utilized for map-based localization. (d): The concatenation of
distortion-free images. The red bounding box and circle are extracted by the visual object detection. The green bounding box and circle are
tracked by the visual object tracking. The blue bounding box and circle are reprojected estimated states of the drone. The circles are the
center of the bounding box.

Algorithm 1: Visual Target Tracking Module
Data: Set of estimated drones De, set of visual target

files VTF
Input: I, the set of distortion-free images.
Output: ZD, the set of visual target measurements.

1 Function VisualTargetTracking(I)
2 VTC ← YOLO(I)
3 VTF ← MOSSETrackers(I,VTF)
4 for VTCi ∈ VTC do
5 for VTF j ∈ VTF do
6 Ci,j ← ci,j(VTCi, VTF i)
7 for j ∈ De do
8 Ci,j+‖VTF ‖ ← ci,j(VTCi, Di)
9 M← Hungarian(C)

10 VTF u ← ∅
11 for VTCi ∈ VTC do
12 if VTCi ∈M then
13 j ←M(i)
14 if j < ‖VTF ‖ then
15 VTF j .T ←NewMOSSE(I, VTCi.B)
16 else
17 VTF u ← VTF u∪ NewVTF(VTCi, Di)
18 else
19 VTF u ← VTF u∪ NewAnonVTF(VTCi)
20 ZD ← ∅
21 for VTF i ∈ VTF u do
22 ZD ← ZD∪ PoseEstimation(VTF i)
23 VTF ← VTF ∪ VTF u
24 return ZD

1) Visual Drone Detection: We adopt YOLOv4-tiny [44],
[45], one of the state-of-the-art visual object detection ap-
proaches based on a convolutional neural network (CNN),
for detecting the 2D bounding boxes of the drones on the
distortion-free images extracted from raw fisheye images. In
practice, limited to the computational resources, only the
upward-facing camera is used. The network is trained with

our custom data to efficiently detect our custom drones. A
demonstration of the detected bounding boxes is shown in
Fig. 4d.

As the YOLO function in Alg. 1 shows, the result of the
visual object tracking is a set of target candidates VTC =
{VTC1∗ , VTC2∗ ..}. A target candidate VTCi∗ detected by the
visual object detector can be represented by a bounding box
Bi∗ = [BL

i∗ ,B
R
i∗], where BL

i∗ is the coordinates of the left-
upper corner of bounding box and BR

i∗ is the coordinates of
the right-bottom corner.

2) Visual Object Tracking of Drones: In VDT, we use
MOSSE [46] as the object tracking technique to keep track of
visual target files. MOSSE is a visual tracking approach that
combines robustness and efficiency. The images I extracted
from the original image by VINS-Fisheye are also utilized for
visual object tracking, as the function MOSSETrackers in
Alg. 1.

If a new visual target file VTCi∗ is successfully associated
with an existing visual target file VTF j∗ , then the visual tracker
of VTF j∗ will be replaced by a new visual object tracker
initialized by Bi∗ (line 15 of Alg. 1). Otherwise, we use Bi∗

to create a new visual target file in the function NewVTF and
function NewAnonVTF.

In practice, since visual object detection consumes far more
computational resources than visual object tracking, we run the
former at a lower frequency (1 Hz in practice) than the latter
(10 Hz in practice).

3) Data Association: For a homogeneous swarm, one is-
sue is the association between the detected targets and the
drones observed by state estimation, but this is essential for
subsequent state estimation. The problem of data association
for visual drone detection in Omni-swarm is divided into two
sub-problems. The first is to initialize the state estimation,
and the second is to perform global-nearest-neighbor (GNN)
matching on the target based on the existing estimation. The
state estimation of Omni-swarm can be initialized by a variety
of methods, which will be described in detail later in Sect. V-E,
including an approach using only anonymous visual target

8

files. On the other hand, GNN has been widely adopted in
multi-target tracking algorithms [47]–[49] for data association.

Here, we propose a unified framework to associate the visual
target candidates to visual target files and to the estimated
drones. The latter two are collectively referred to as objects.
This method does not require the system to be fully initialized,
considering that it also has the responsibility of tracking of
anonymous targets. We project all the drones estimated by
Omni-swarm onto the image plane, as shown by the blue
bounding box in Fig. 4d. These projected bounding boxes are
treated the same as the bounding box of the visual target files
(the green bounding box in Fig. 4d), as the objects in GNN.
The corresponding cost between candidates (the red bounding
box in Fig. 4d) and objects is defined by

ci∗,j =

{
1− oi∗,j , oi∗,j > 0

+∞, oi∗,j = 0,
(3)

where oi∗,j is defined as the overlap of the two bounding
boxes, which is defined as

oi∗,j = Aii∗,j/max(Aj , Ai∗),

where Aii∗,j is the intersection area of bounding box Bi∗ and
Bj , and Aj and Ai∗ are the areas of two the bounding boxes.

With the corresponding cost defined here, we create a
corresponding cost matrix C of the candidates and objects. In
addition, we add dummy objects and dummy candidates with a
+∞ distance to all normal candidates and objects to represent
missing detections and false alarms. Finally, Omni-swarm uses
the Hungarian algorithm [50], [51] to solve the GNN problem
defined by Betke et al. [47] with the corresponding cost matrix
C. Alg. 1, line 9, shows this procedure. The output of the
Hungarian algorithm is a corresponding dictionary in which
the candidates assigned to dummy objects are not present.

After the Hungarian algorithm is performed, for each candi-
date VTF i∗ , if VTF i∗ is assigned to a visual target file, the old
visual target files’ visual object tracker will be updated in Alg.
1, line 15. If a VTF i∗ has been assigned to a drone observed by
state estimation, it will create a named visual target; otherwise,
it creates a new anonymous visual target file. This is shown
in Alg. 1, line 17 and line 19.

4) 6-DoF Pose Estimator: The VDT adopts a CNN-based
6-Dof pose estimator [52], [53] to extract the accurate 6-DoF
relative pose estimation of the visual target files as the function
PoseEstimation. Specifically, this approach performs relative
pose estimation by using CNNs to extract semantic feature
points of objects in images and build optimization problems.
The network is trained with the distortion-free images col-
lected from the onboard fisheye cameras for efficiently de-
tecting our custom drones. Before solving the full-perspective
pose estimation problem, an additional outlier rejection on
features using EPnP with RANSAC [54] is performed.

The 6-DoF relative poses extracted by VDT from drone k
to drone j will be adopted as visual detection measurements,
which can be modeled as

zD
t0
k→j = (Pvi t0

k)−1(Pvi t0
j) + nD, (4)

where this relationship stands with any reference frame vi and
nD is Gaussian noise. We call this result the visual detection

Algorithm 2: Multi-drone Map-based Localization Al-
gorithm for Drone k
Data: Local Visual Database Dl, Remote Visual

Database Dr, Local Drone k
Input: F t1j

1 Function KF_QUERY(F t1j , D)
2 C ← ∅
3 for Kc t1

j ∈ F
t1
j do

4 if j = k then
5 C ← C ∪ KNN_SEARCH(Kc t1

j ,Dr, τfl)
6 C ← C ∪ KNN_SEARCH(Kc t1

j ,Dl, τfl)
7 ADD(Kt1j , j = k,Dl,Dr)
8 K ← argmin(Kc)f

∥∥(Kc)f − (Kc t1
j)f

∥∥
9 return K.F

10 Function G_CHECK(Vj R̂t0
i , R̃

t0
i , R̃

t1
j)

11 δR̂t0→t1
i→j ← (Vj R̂t0

i)−1R̃t0
i

12 ViR̂t1
j ← R̃t0

i δR̂
t0→t1
i→j

13 δψ ← (R̃t1
j)ψ − (ViR̂t1

j)ψ
14 ∆R← (Rz(δψ) ViR̂t1

j)T R̃t1
j

15 return ‖∆R‖ > τrot
16 Function LOOP_DETECTION(F t1j)
17 F t0i ←KF_QUERY(F t1j , D)
18 if F t0i 6= ∅ then
19 P2d

t0
i ,P3d

t1
j ←BF_MATCHER(F

t0
i , F t1j)

20 inliers,Vj T̂t0
i ←PNP_RANSAC(P2d

t0
i , P3d

t1
j)

21 if inliers ≥ τin then
22 if G_CHECK((T̂

Vj t0
i)R, (F t0i)R, (F t1j)R)

then
23 zL

t0→t1
i→j ←

(
(T̂
Vj t0

i)−1T̃t1
j

)
P

24 return zL
t0→t1
i→j

25 return ∅

measurement. We only perform pose estimation on newly
created or updated VTFs to save computational resources.

C. Multi-drone Map-based Localization Module

Similar to the approach used in VINS-Fisheye, we also
perform visual object detection on distortion-free images.
The multi-drone map-based localization (MDML) module
performs relative localization and eliminates the drifting of the
VIO by identifying the locations visited by all the drones of
the aerial swarm. Sparse maps, which contain landmarks and
keyframes, are simultaneously generated by local and remote
measurements on every drone. Beyond optimizing the sparse
maps, we utilize them to extract relative poses among drones in
the swarm by a loop closure detection procedure. The MDML
module is decentralized, running on each drone separately.

1) Multi-drone map-based Localization Procedure: When
the MDML module receives the VIO keyframes, it uses
MobileNetVLAD [55], [56] to extract the global features and
uses SuperPoint [57] to extract the landmarks and the cor-
responding descriptor. Correspondences between landmarks
from the upward-facing and downward-facing cameras are
established by performing feature matching, and the matched
landmarks are triangulated for estimating their 3D positions in

9

Fig. 5: A demonstration of detected map-based measurements
between different drones. Green lines denote the inlier landmarks
correspondences, and red lines denote the outliers.

the local frame. The global descriptor and landmarks, together
with the odometry and extrinsic, are packed into keyframe
F ti , which will be broadcast to the entire swarm later. It is
worth noting that we broadcast only the feature points with
the 3D position successfully estimated (some of the features
will fail to establish correspondence) to reduce the amount of
communication.

To store and retrieve these keyframes, we build databases
based on Faiss [58], which is a vector similarity retrieval
database. The keyframes F t1j , which are indexed by the
corresponding global descriptors, are saved in the databases
as maps. After the module receives a keyframe remotely or
locally, loop closure detection is adopted to extract the relative
pose. There are two separate visual databases on each drone; a
remote database Dr that stores keyframes from remote drones,
and a local database Dl that stores keyframes from the local
drone. Extracting the map-based measurement for a pair of
keyframes from Dr is avoided to save computational resources
since all the extracted map-based measurements are broadcast
to the whole swarm.

The procedure of loop closure detection is shown in
Alg. 2. Suppose a drone k receives a keyframe F t1j from
drone j, where if j = k, the keyframe is generated by
the drone itself. The most similar keyframe F t0i to F t1j in
the databases is retrieved by function KF QUERY. We use
function KNN SEARCH to retrieve the K nearest-neighbor
of the descriptors from the Faiss database, where K is set
to 5 in practice. When the search is completed, the new
keyframes are added to the local or remote database by
function ADD. Finally, function KF QUERY returns the cor-
responding keyframe K.F of the nearest-neighbor distortion-
frame image keyframe K.

2) Relative pose extraction: Once the keyframe F t0i is
returned from the visual database, we establish the 2D-3D
matches from the landmarks of F t0i to landmarks of the
F t1j by using the landmark descriptors with a brute-force
matcher BF MATCHER. The brute-force matcher finds the
correspondences of features with a minimum L2 distance, and
uses a cross check to reduce outlier correspondence4. Either
keyframe retrieved from the database or brute-force matching
may bring abnormal results. To remove the outliers, the map-
based measurement is verified with two methods in the map-
based localization module.
• Homography test [59] and Perspective-n-point (PnP) test

with RANSAC [54] between the 2D features of the
incoming keyframe and the 3D positions of the queried

4A more detailed introduction to the brute-force matcher can be found at
https://docs.opencv.org/4.x/dc/dc3/tutorial py matcher.html

keyframe. These tests are peformed in the function
PNP RANSAC.

• Geometric test peformed by G CHECK. In this test, the
consistency of gravity is checked with the 6-DoF pose
extracted by PnP RANSAC.

If enough inliers are found in PNP RANSAC and the geo-
metric test is passed, the map-based measurement zLt0→t1i→j is
considered valid. In addition, zLt0→t1i→j can be modeled as:

zL
t0→t1
i→j = (Pvk t0

i)−1(Pvk t1
j) + nL, (5)

where this relationship stands with any reference frame vk and
nL is Gaussian noise.

When i 6= j, the map-based measurement zLt0→t1i→j provides
sufficient observability of the relative pose of drone i and
drone j. This makes map-based measurements essential in the
observability verification and initialization of state estimation.
If t0 6= t1, the map-based measurement represents the relative
pose of the drones that visit the same place at different times,
which eliminates the accumulated drifting error of the VIO.

D. UWB Measurement

The distance measurements from the UWB module can be
modeled as

ztdi,j =
∥∥ Xvk t

i − Xvk t
i

∥∥
2

+ nd, (6)

where nd ∼ N (0, σ2
d) is the Gaussian noise of the distance

measurement. The installation length of the antenna relative
to the IMU is ignored in our model.

V. BACK-END: GRAPH-BASED OPTIMIZATION FOR STATE
ESTIMATION

Fig. 6: The structure of the back-end of Omni-swarm. The swarm
frames SF t composed of VIO and UWB measurements are first
judged to be swarm keyframes, and the non-keyframes are only
utilized for forward propagation, while the swarm frames that qualify
as swarm keyframes are added to the graph. The system will eval-
uate whether the measurements in the graph meet the observability
requirements. When the requirements are met, the system solves the
graph-based optimization for swarm state estimation. Finally, we use
the optimization results to perform forward propagation to obtain the
real-time state of the swarm.

A. Swarm Keyframe Limitation

Similar to our previous work [18], a swarm frame SF t
is judged to be a swarm keyframe is by the motion of the
drones in this frame relative to the last swarm keyframe,

10

or a new drone is discovered in SF t. To limit the com-
putational resources utilized by the back-end, we keep the
numbers of swarm keyframes in G within a preset maxi-
mum number mmax. In contrast to the sliding window of
the swarm keyframes employed in our previous work [18],
here we use a random deletion mechanism to achieve better
global consistency; once the graph’s swarm keyframe in the
graph grows to more than mmax, we randomly delete one
swarm keyframe. The intuition of this approach is that the
earlier swarm keyframes in G have less impact on the relative
estimation. With this approach, the earlier swarm keyframes
in G are not immediately discarded but become more sparse,
which allows us to use early swarm keyframes for optimization
without affecting the computational speed due to too many
keyframes. This leads to less drifting and better global consis-
tency. In practice, mmax is set to 100 as a tradeoff between
the performance and accuracy. Taken together, compared to the
previous sliding window method, this method does not affect
the accuracy of relative estimation, but obtains better global
consistency, which is verified in Sect. VII-C4.

B. Outlier Rejection

One challenge for achieving robust swarm state estimation
is the variety of factors that can cause measurement outliers.
Although we perform several outlier rejections in the front-
end, some outliers will always be transferred to the back-end.
Here we introduce the outlier rejection techniques adopted by
the back-end of Omni-swarm.

1) Unified outlier rejection for visual target measurements
and map-based measurements: Pairwise-consistency measure-
ment set maximization (PCM), proposed by Mangelson et
al. [60], is the state-of-the-art outlier rejection technique for
loop closure (also called map-based measurements in the
paper) and has been verified on real-world SLAM systems
[17] [61]. In Omni-swarm, we introduce a unified outlier
rejection module for the visual target measurements and the
map-based measurements (collectively referred to as relative
pose measurements) based on PCM. This method is applicable
to visual detection measurement because the visual target
measurements are also 6-DoF relative pose measurements. Our
PCM module combines the inter-drone and intra-drone PCM
outlier rejection methods [17], [60], [61].

The core of the PCM outlier rejection is consistency
graphs [60]. A consistency graph is a graph GPCM

i,j =
{V PCMi,j , EPCMi,j }, where vertex v ∈ V PCMi,j represents a
relative pose measurement between drone i and drone j,
and each edge e ∈ EPCMi,j represents the consistency of
the measurements. Only the consistent pairs-of-vertices are
connected with an edge. We maintain a set of consistency
graphs

{
GPCM
i,j |i ∈ D, j ∈ D

}
of each pair of drones. When

i 6= j, GPCM
i,j denotes the inter-drone measurements, and vice

versa for the intra-drone measurements.
Prior to graph-based optimization, we will first update the

consistency graphs
{
GPCM
i,j |i ∈ D, j ∈ D

}
with the newly

received relative pose measurements in G. Similar to [61],
the consistency graph is updated incrementally to save the
computational power. For every updated GPCM

i,j , we adopt

the fast maximum clique method proposed by Pattabiraman et
al. [62] to solve the PCM problem defined in [60] and thus
determine the inner measurements. Each drone only solves
the PCM problem with itself involved to save computational
power and shares the inlier measurements with the other
drones in the aerial swarm.

2) Outlier Rejection for Distance Measurements: In our
experiments, we find that the UWB generates significant
outliers when two drones have a large relative elevation angle.
This is because of the occlusion of the drones’ airframe, and
we decide to flag out the measurement ztdi,j , which satisfies∣∣∣arcsin

(
ztdi,j/

(
zvk t
i − zvk t

j

))∣∣∣ > τele, (7)

where zvk t
i and zvk t

j is the estimated height of drone i and j,
respectively, and τele is the elevation threshold, which is set
to 37◦ in practice. τele is chosen regarding the angle at which
the drone fuselage obscures the UWB. Finally, we utilize the
residual defined in Eq. (11) without the Huber loss to test if the
distance measurement is consistent with the current estimation,
and rd(z

t
dij
,Xk) > τd will be flagged as an outlier, where τd is

the distance outlier threshold, which is set to 0.3 m in practice.
The expected error of UWB measurements is no more than 10
cm, and we choose it three times as τd to ensure that the correct
values are not overly filtered out. When τd is too large, the
outlier will interfere with the estimate estimation, and when
τd is too small, the correct measurement will be rejected due
to inaccurate initialization.

C. Optimization Problem

After the outlier rejection, the factor graph Gf will be
constructed from the graph G with poses as its variables and
inlier measurements as the factors. Once we set up the factor
graph, a non-linear least-squares optimization problem is built
to solve the maximum a posteriori (MAP) inference of the
factor graph [41] for swarm state estimation. For a drone k,
the full state vector Xk of the swarm state estimation problem
is defined as:

[vkX̂t0T
0 , vk ψ̂t00 ... vkX̂

tm−1T
0 , vk ψ̂

tm−1

0 ,

... vkX̂t0T
1 , vk ψ̂t01 ... vkX̂

tm−1T
n−1 , vk ψ̂

tm−1

n−1]T ,
(8)

where
[
vkX̂tT

i ,
vk ψ̂ti

]T
is the state vector of 4-DoF pose

vkP̂ti, n is the number of drones in the swarm system, and m
is the number of keyframes in the graph. The non-linear least-
squares optimization problem for MAP inference is expressed
as the following formulation:

min
Xk

{ ∑
(i,t)∈S

∥∥rRP (ztδPi
,Xk

)∥∥2

Σ
+

∑
(i,j,t)∈U

ρ

(∥∥∥rd(ztdij ,Xk)
∥∥∥2

Σ

)
+

∑
(i,j,t)∈VD

ρ
(∥∥rRP(zD

t
i→j ,Xk)

∥∥2

Σ

)

+
∑

Lt0→t1
k→j ∈L

ρ
(∥∥rRP(zL

t0→t1
i→j ,Xk)

∥∥2

Σ

)}
,

(9)

11

where S is the set of all odometry factors; VD is the set
of all visual detection factors, U is the set of all distance
factors, L is the set of map-based factors, rd(ztdij ,Xk) is the
residual of the distance factor, where rRP(·,Xk) represents
the residual of the relative pose, which is applicabe to the
ego-motion factors, map-based factors and visual detection
factors. rRP

(
ztδPi

,Xk
)

represents the residual of the ego-
motion factor, ensuring the local consistency of drone i’s
state, rRP(zD

t
i→j ,Xk) is the residual of the visual detection

factor, where (i, j) presents the drone j detected by drone i,
rRP(zL

t0→t1
i→j ,Xk) represents the residual of the map-based

factor, which ensures the global consistency and observability
of the relative state. Since some outlier measurements may
be generated in distance measurements, map-based factor
measurements, and visual detection measurements, we adopt
the Huber norm ρ(s) [63] to reduce the effect of possible
outlier factors.

According to the measurement models stated in (2),(4) and
(5), the residual of the relative pose is defined as

rRP(zRP
t0→t1
i→j ,Xk) =

(
zRP

t0→t1
i→j

)−1
(

(vkP̂t0i)−1vkP̂t1j

)
,

(10)
where zRP represents the relative pose measurements includ-
ing the ego-motion measurement, map-based measurement,
and visual target measurement. Referring to the measurement
model stated in Eq. (6), the residual of the distance is

rd(z
t
dij ,Xk) = ztdij −

∥∥vk x̂ti −vk x̂tj
∥∥ . (11)

Finally, the Ceres Solver, an open-source C++ library de-
veloped by Google for modeling and solving non-linear least-
squares optimization problems [64], is adopted to solve the
optimization problem with a trust region method using a sparse
normal Cholesky decomposition is chosen as the optimization
algorithm. Meanwhile, since the planner or controller may re-
quire high-frequency real-time poses, the poses P̂vk t

i and T̂vk t
i

are forward propagated based on the latest IMU propagated
VIO P̃ti and T̃t

i1 to predict the swarm state at a higher rate
of 100 Hz following (1) and

P̂vk t1
i = P̂vk t

i(P̃
t
i)
−1P̃t1i . (12)

D. Observability Analysis

(a) (b) (c)

Fig. 7: Observability of UWB-odometry fusion: a) Two drones fly
separately and the flight direction is not parallel. At this time, the two
drones are observable to each other due to the presence of motion. b)
Drone 1 is flying and drone 2 is in place. At this point, drone 1 can
observe the position of drone 2, but the yaw of 2 is not observable.
Drone 1 is not observable from drone 2. c) The two drones are
flying parallel to each other and at this point, the two drones are
unobservable to each other.

One of the key features of this system is the fusion of several
sensors with completely different characteristics, and this
multi-sensor fusion can effectively improve the observability

TABLE I: Observability with typical measurements com-
binations in different scenarios. T in the table means the
measurement exists. F in the table means the measurement
is absent. T/F in the table indicates that the existence of the
measurement does not change the observability.

Typical Scenarios Motion
k

Motion
i

UWB Detection
k ↔ i

Map-based
k ↔ i

Observability
k ↔ i

Feature-rich T/F T/F T/F T/F T 6-DoF

Feature-poor

F F T/F F F No
T/F T/F T/F T T/F 6-DoF
T F T F F 3-DoF
T T T T/F T/F 6-DoF

in various environments. In feature-rich scenarios (usually
narrow indoor environment), the rich features allow us to take
full advantage of the map-based localization for state esti-
mation. The inter-drone map-based measurements and visual
detection measurements provide direct 6-DoF observability
between drones, as the first and third rows in Table I show.

However, map-based localization is challenging to perform
in feature-poor scenarios, e.g., open environments such as
stadiums, lawns, and farmland, where there are few features,
and visual detection measurements are limited by the visual
detection range. In such scenarios, UWB-odometry fusion
can be utilized for state estimation instead. The necessary
condition for the observability of the relative state estimated
by UWB-odometry fusion is the presence of relative motion,
i.e., an aerial swarm stationary on the ground or flying in
parallel does not satisfy this condition. As shown in Fig. 7,
when drone 1 in the factor graph has sufficient motion and
drone 2 is fixed, drone 1 can estimate the position of drone 2.
However, the yaw angle of drone 2 cannot be estimated. Only
when both drone 1 and 2 in the graph have motion and there
is relative motion can drone 1 and 2 estimate each other’s 6-
DoF pose with UWB-odometry fusion. In practice, this brings
a considerable level of annoyance. For example, aerial swarms
are likely to remain in fixed-formation flight for long periods,
in which case relative motion does not exist. In Omni-swarm,
this issue is solved by fusing the relative pose given by visual
drone tracking.

In summary, Table I shows the observability of Omni-
swarm in various scenarios. We find that, by incorporating
multiple sensors and measurements, Omni-swarm is capable
of maintaining observability in various complex environments.

E. Initialization

Omni-swarm independently tracks the observability of each
drone in the Dku for initialization. Depending on the observ-
ability, as given in Table I, Omni-swarm has various ways
of performing initialization: 1) UWB-odometry initialization
with sufficient motion; 2) map-based measurements for ini-
tialization; and 3) anonymous visual detection measurements
for initialization. A special case is drone k itself, whose state
is initialized by its VIO.

1) Map-based measurements for initialization: One of the
biggest advantages of map-based localization is that only one
measurement is needed to provide sufficient observability, as
shown in the first row of Table I. In this case, when a map-
based measurement zL

t0→t1
i→j , where i ∈ Dke is an estimated

drone and j ∈ Dku is an uninitialized drone, is detected by

12

the map-based localization module, the system immediately
initializes the drone, and we use this map-based measurement
and the ego-motion of drone i to initialize its poses in G:

P̂vk t
j ← P̂vk t0

i zL
t0→t1
i→j

(
(P̃t1j)−1 P̃tj

)
,

where P̂vk t
j is the state to be initialized in G.

2) Anonymous Visual Detection Measurements for Initial-
ization: Similar to map-based measurements, the visual detec-
tion measurements also contain 6-DoF information, which pro-
vides sufficient observability to initialize the state estimation,
as shown in the third row of Table I. The difference is that the
target ID of these visual detection measurements is anonymous
when the system is not fully initialized. Therefore, we need to
associate the anonymous IDs with the IDs of the uninitialized
drones Dku first, and then initialize the state estimates of the
matched drone using the same method as in Sect. V-E1.

The data association method with anonymous visual detec-
tion measurements in Omni-swarm is a well-pruned depth-first
search (DFS) [23], [65]. This method was first proposed by
Zhou et al. [65] for multi-target tracking and was extended by
Nguyen et al. [23] to the case where multiple homogeneous
drones in an aerial swarm detect each other with anonymous
relative measurements. We do not expand the details of this
DFS algorithm here due to the space limitation.

3) UWB-odometry for Initialization: Unlike the previous
two cases, initialization with the UWB-odometry requires a
combination of measurements in multiple frames to provide
sufficient observability, as shown in the fourth and fifth rows
of Table I. The initialization condition for drone i is that there
exists enough motion of drone i in the swarm keyframes where
both ego-motion and UWB measurements of drone i and drone
k exist, i.e., drone i has at least 3-DoF observability by drone
k. In practice, we require the motion of drone i to be larger
than a bounding box of [1.5, 1.5, 0.8] m. This bounding box
is chosen so that the system has a sufficient baseline length.

In contrast to the previous cases, we cannot obtain an
initial estimate of the states directly from the UWB-odometry
measurement. The initialization with UWB-odometry fusion is
accomplished by solving Eq. (9). To avoid the problem of the
local optimal in this process, we will set three different random
values for initializing the state of drone i and choose the one
with the lowest cost as result of the optimization. Specifically,
the poses of the other drones are initialized with the values of
x, y positions randomly distributed in [−5, 5] m and z position
randomly distributed in [−1, 1] m. The initialized value of yaw
is equal to the yaw estimated by VIO. This scale corresponds
to the possible distribution of an aerial swarm of 10-20 drones
in the takeoff state. This procedure can be accomplished within
within 15 ms on a PC and 100 ms on the onboard computer.

A point worth noting is that this UWB-odometry fusion
cannot avoid the unobservability in the case in Fig. 7c; i.e., if
the flight paths of the two drones are parallel during the UWB-
odometry initialization, the method may lead to incorrect
results. Nevertheless, with other measurements in the Omni-
swarm, this problem is very unlikely to occur. This is one
advantage of Omni-swarm over other UWB-odometry fusion
methods.

4) Initialization Procedure: When a new drone starts up
and starts sending its measurements, Omni-swarm adds it to
the set of available drones Dka and set of uninitialized drones
Dku. The observability condition shown in Table I of each
drone in Dku is checked before each optimization. Once a
drone i in Dku is found to satisfy at least 3-DoF observability,
the initialization approaches corresponding to the available
measurements will be adopted to initialize its states.

VI. SYSTEM IMPLEMENTATION

To fully demonstrate the Omni-swarm method proposed in
this paper in real-world experiments, we present an aerial
swarm system containing drones, algorithms, software man-
agement, a communication network, and 3D user interface.
We also develop an aerial swarm trajectory planning method
for verifying the practical value of Omni-swarm in inter-drone
collision avoidance experiments.

A. Aerial Platform

Our aerial swarm contains a few homogeneous custom
drones, as shown in Fig. 8. The drone is equipped with a
DJI N3 flight controller, two Pointgrey cameras with fisheye
lenses, a NoopLoop UWB module, a DJI Manifold 2-G
onboard computer with an Nvidia TX2 Module, and a WiFi
module for communication. The front-end of VINS-Fisheye is
accelerated with CUDA, and the various CNNs used for state
estimation are accelerated with TensorRT. On the TX2, the
TensorRT accelerated CNNs are two times faster than using
TensorFlow and PyTorch and it takes up less memory. The
computational performance will be detailed in Sect. VII-F

To facilitate the distribution of all the algorithms, including
state estimation and planning, we divide the software running
on the onboard computer into two layers: the boot layer
running on the operating system and the algorithm layer
running in the docker container. Omni-swarm together with
the trajectory planning method, is deployed by a docker image
and individually runs on each drone. The docker images are
distributed through our wireless ad hoc network and each
drone automatically pulls updates to improve the development
efficiency. An additional computer serves as the maintenance
server of the aerial swarm to facilitate the distribution of the
docker image, which is not essential for flight. After we update
the code, we may quickly get every drone’s docker image up
to date by simply booting up the drone within the operating
range of the maintenance server’s wireless ad hoc network.

B. Frequency and Synchronization

Different measurements have different frequencies, which
generally depend on the nature of the sensor and its computing
power. In practice, we set the acquisition frequency of the
camera to 20 Hz (for collecting datasets) or 16 Hz (for inter-
drone collision avoidance experiments), IMU to 400 Hz and
UWB to 100 Hz for distance measurements. VIO uses the
IMU to predict the current ego-motion, so its output is also
400 Hz.

Timestamp synchronization is another vexing problem in
robot swarms. The UWB module completes mutual timestamp

13

Fig. 8: One of the aerial platforms in the swarm system, which is
equipped with stereo fisheye cameras, a DJI N3 flight controller, a
Nooploop UWB module, and a DJI Manifold2-G onboard computer
with an Nvidia TX-2 chip.

synchronization during ranging and communication, and sends
the synchronized timestamps to the onboard computer via
the serial port. Therefore, we choose the UWB timestamp
as the time reference to obtain a swarm-wide synchronized
timestamp.

To cope with the different frequencies and the time differ-
ences between different measurements, we take the timestamps
of UWB measurements and convert swarm keyframes and all
the other measurements to these timestamps. For VIO, this
conversion process is achieved by finding the nearest UWB
timestamp. Since VIO has 400 Hz output, the error caused
by the difference between the VIO timestamp and the nearest
UWB timestamp is small. For visual target measurement and
map-based measurement, we use ego-motion to convert their
relative pose by

zRP
ta→tb
i→j ←

(
(P̃tai)−1 P̃t0i

)
zRP

t0→t1
i→j

(
(P̃t1j)−1 P̃tbj

)
,

(13)
where zRP

t0→t1
i→j is the relative pose measurement, ta and tb

are the timestamps of swarm keyframes, which are nearest to
t0 and t1. Eq. (13) converts the zRP

t0→t1
i→j to a relative pose

measurement between timestamp ta and tb. The accuracy loss
caused by this conversion process is also negligible due to the
good local accuracy of VIO.

Finally, Omni-swarm’s graph-based optimization is solved
at a speed of 1 Hz and is forward propagated through VIO
at 100 Hz. Table II shows the computational frequency of the
main components in Omni-swarm. Compared to on a PC, we
reduce the computational frequency of the Omni-swarm on the
onboard computer so that Omni-swarm has sufficient real-time
performance in real-world applications. This is shown in the
bottom row of Table II. In addition, on the onboard computer,
the position control frequency is 50 Hz.

C. Redundant Computations

The computations involved in the Omni-swarm can be
classified into two types according to whether they are com-
puted redundantly or not: 1) Distributed computations: VIO,
visual target tracking, and map-based localization, which are
not duplicated computed on different drones. 2) Redundant
computations: Graph-based optimization of (Eq. (9)) is re-
dundant when computed on different drones. We choose to

TABLE II: The computational frequency of each component on
the PC and onboard computer. In the table, VINSF and VINSB
is the frontend and back-end of VINS-Fisheye, respectively. Det.
is the visual detection (YOLO) in VDT, and Trk. is the visual
tracking (MOSSE). Desc. is the descriptors extraction (NetVLAD
and SuperPoint) in MDML. LoopDet. is the loop closure detection in
MDML, including database retrieval and brute-force matching. Opti.
is the graph-based optimization. n in the table is the drone number
of the swarm. The units in this table are Hz.

Plat VINSF VINSB Det. Trk. Desc. Loop. Det. Opti.
PC 20 10 2 20 0.3 0.3 ∗ n 10

Onboard 16 8 1 10 0.3 0.3 ∗ n 1

TABLE III: The broadcasting bandwidth requirements of Omni-
swarm for each drone. Odom & UWB is the odometry and UWB
distances measurements. Keyframe represents the keyframe informa-
tion for map-based localization. Inliers are the broadcast PCM result
for each other drone in the swarm.

Item Freq Size Bandwidth
Odom & Dis 100 Hz 49 Bytes 4.90

Keyframe 0.3 Hz 180 kB 54.0 kB/s
Inliers 1 Hz 552 Bytes 0.47 kB/s
Sum 59.4 kB/s

solve this optimization on each drone individually to allow the
state estimation to be robust to temporary network failure or
single-point failure. It also avoids the communication overhead
induced by distributed optimization methods [16], [21].

D. Network Setup

The latency, bandwidth, interference immunity and working
range of the communication directly determine if the pro-
posed method will work well in practice. In the real-world
experiments, the drones need to exchange image descriptors
and flight paths, requiring a much larger communication band-
width. In this case, we use a wireless ad hoc network based
on the independent basic service set (IBSS) configuration
of IEEE 802.11 standard [66] to meet the communication
requirements, which cover the task execution system and main-
tenance requirements. One advantage of the wireless ad hoc
network is its decentralized nature. No central server or router
is required for deploying the wireless ad hoc network. With a
5.2 Ghz wireless ad hoc network, our communication network
can cover a sufficient area in our experiments and provide
high bandwidth and low latency communication services. In
our laboratory environment, this network reached a 4.9 MB/s
bandwidth at a distance of 22.4 m.

We use lightweight communications and marshalling (LCM)
[67] to achieve efficient data encoding and communication
broadcast in the ad hoc wireless network. The communication
broadcast is limited to one-hop neighbors, covering all the
swarm members in our current experiment. Some of the
transmissions with lower bandwidth requirements are simulta-
neously backed up by UWB. While this network architecture
is not part of the proposed state estimation, it accelerates our
development and debugging process.

E. Communication Bandwidth Requirements

Table III summarizes the major bandwidth of data broad-
casting to the swarm by Omni-swarm for each drone, where

14

TABLE IV: Packet loss rate when there are different numbers of
drones in the field.

Number 2 3 4
Avg. Loss. 3.5% 4.7% 3.9%

keyframe takes the biggest proportion. The major bandwidth
is consumed on broadcasting landmark descriptors generated
by the SuperPoint. In Omni-swarm, we compress the landmark
descriptors (averaging 696 per keyframe) from 256 dimensions
to 64 dimensions using PCA dimensionality reduction, which
has no significant impact on the feature matching but reduces
the communication amount by 534.5 kB (three times to
current) per keyframe. We send each landmark descriptor sepa-
rately in broadcasting the keyframe for map-based localization.
Losing some of landmark descriptors does not affect the loop
closure detection.

Table IV shows the packet loss rate with different numbers
of drones in the field in the actual test. This result indicates
that the packet loss rate does not change significantly with the
current number of drones, which shows that Omni-swarm is
scalable in the network. According to the available bandwidth
in the lab environment (4.9 MB/s), the ideal limitation of the
size of the aerial swarm given by the ad hoc network is 83.

F. Trajectory Planning for Swarm

To demonstrate the capability of our state estimation
method, we conduct fully autonomous formation flights and
inter-drone collision avoidance tests. In these flights, trajec-
tories of the drones are generated by the method extended
from Fast-Planner [1], a real-time trajectory planner based on
kinodynamic search and gradient-based optimization.

The original Fast-Planner [1] assumes a static environment
and does not consider the interaction with other agents. There-
fore, we adapt it to achieve decentralized collision avoidance.
Among all the drones, trajectories are shared through the wire-
less ad hoc network. Each drone checks whether any conflict
exists in its own trajectory and that of others. Whenever a
conflict is found, it replans a new trajectory immediately. The
replanning starts by searching a safe and dynamically feasible
initial path, in which motion primitives conflicting with other
drones’ trajectories are pruned to avoid an inter-drone colli-
sion. Collision avoidance is achieved by properly designing
the collision penalty function in the trajectory optimization,
following recent literature [68], [69]. If a collision happens,
the penalty term grows rapidly, which quickly dominates
the overall optimization objective function. The process is
repeated for each drone independently until it reaches the
designated goal. In this process, all computations, including
trajectory planning, state estimation, and flight control, are
done on the onboard computer.

VII. EXPERIMENTS

To validate Omni-swarm’s feasibility, accuracy, and prac-
tical value, we run a series of experiments: 1) timing and
scalability of Omni-swarm on a PC and TX2 onboard com-
puter; 2) experiments to verify the features of Omni-swarm; 3)
accuracy comparison with the ground truth on a custom dataset
with various other approaches; 4) verification of the global

Fig. 9: A demonstration of the growth of computational time
with different swarm scales in the simulation of two scenarios. The
left figure shows the computation time of graph-based optimization
(symbol ’x’) and fitted quadratic splines. The right figure shows the
computation time of PCM outlier rejection (symbol ’+’) and fitted
lines. Suffix 1 and 2 in the legends correspond to Scenario 1 and
Scenario 2.

consistency on an outdoor dataset; 5) real-time performance
verification in an inter-drone collision avoidance experiment.

A. Scalability

It should be clear that the computation effort scale of the
Omni-swarm’s front-end is not significant with the number
of drones. This is because most components in the front-end
are running at a fixed frequency, which is not relevant to the
scale of the drone. There are two special cases: 1) VDT’s pose
estimation is computed separately for each detected drone. It
is related to the number of drones in the FoV. In practice,
it is unlikely that there will be too many drones in the FoV,
so the scalability issue here is not severe. 2) Loop closure
detection requires the Faiss database to retrieve the keyframe.
Faiss has the complexity of O(k log(l/w)) for KNN searching
[70], where k = 5 is the selection number each time, w = 32
is a parameter of Faiss, l is the size of the keyframes in the
database, which can be considered as linear to the swarm scale.
In practice, the computation time that grows logarithmically
with the scale of the swarm does not introduce scalability
difficulties.

Next, we discuss the scalability of the Omni-swarm’s back-
end. Here we assume that measurements are consistent be-
tween any two drones. Two main computational components
are involved in the back-end: 1) PCM outlier rejection: The
drone only needs to compute the PCM problem with another
drone using relative pose measurements making the complex-
ity of this algorithm O(n), where n is the swarm scale. 2)
Graph-based optimization: The scale of Problem (9) grows
quadratically with the swarm scale, so the computational effort
of graph-based optimization is O(n2)

To verify the conclusions here, we use simulations to
simulate the complexity of the back-end computation. Aerial
swarms of scales from 2 to 20 are set up in the simulations
and are tested under different scenarios: 1) The drones in the
swarm are lined up, each drone can only generate relative pose
measurements with several neighboring drones, but all drones
have distance measurements between them. 2) The drones in
the swarm are closely grouped in a grid formation, and all
drones can generate relative pose measurements with each
other.

The results of the simulation are shown in Fig. 9. It can
be seen that the quadratic curves perfectly fit the computation

15

for graph-based optimization in both scenarios. While in Sce-
nario1, the average computation time of PCM outlier rejection
is not significantly related to the swarm scale because the
consistency graph that needs to be computed for each drone
in Scenario 1 only depends on the number of neighbors (2-4).
In Scenario2, PCM outlier rejection takes linearly increasing
time because all drones have relative pose measurements with
each other.

B. Features Verification

1) Fast initialization and plug-and-play: In this experi-
ment, drone 1 and 2 are firstly booted up in the field, with
drone 1 carrying a battery in poor condition to simulate a
real emergency. Omni-swarm is properly initialized after the
program is loaded and the two drones take off. Drone 3 is
then placed in the field and powered on, at which point drone
1 is automatically landed by the onboard computer’s control
system due to its lack of power. This action does not affect
Omni-swarm’s estimation, and the program on drone 3 is then
successfully loaded and correctly estimated by drone 1. Drone
3 establishes a correct estimation of 1 and 2 at the same time.
Next, we launch drone 3 and then remove the battery of drone
1 and remove it from the field. We then add drone 4 in the field,
and after it is estimated by drone 3, we launch drone 4 and
let drone 2 go around drones 3 and 4 to the back of the field
with the inter-drone collision avoidance algorithm. Finally, we
land drone 2 and shut it down, and the state estimation of the
remaining drones 3 and 4 works normally.

2) Non-line-of-sight condition flight experiment: In this
experiment, the two drones are separated by a short wall
at the beginning. Then, the two drones take-off and fly
around the wall anti-clockwise. During the flight, the drones
are not in each others’ line-of-sight. We disable the UWB
measurement in Omni-swarm since the UWB modules can
still measure distances crossing the foam obstacles between
the drones. Once a drone visits the other drone’s starting place,
Omni-swarm immediately initializes, and the state of the two
drones is estimated correctly. This experiment verifies that the
proposed method works even in totally non-line-of-sight cases
if the same location has been revisited.

Recording of these two experiments can be found in our
video5.

C. Evaluation on Datasets

We collect indoor and outdoor datasets for accuracy com-
parison. The datasets include the raw sensor data and ground
truth given by a motion capture system in the indoor laboratory
and outdoor environment without ground truth. The indoor
datasets include: 1) two double-drone-fixed-heading formation
flight datasets; 2) a double-drone formation flight dataset with
the drones heading towards the velocity direction; 3) a double-
drone-random-target flight dataset. The details of the datasets
are shown in Table V.

5https://www.youtube.com/watch?v=SMtJUkKoza4

TABLE V: The datasets we use for accuracy comparison. Traj. Len.
is the trajectory length of different drones in the aerial swarm. Takeoff
time is the average time for aircraft takeoff in different datasets.

Dataset Scale Avg. Traj.
Len. (m)

Takeoff
Time (s) Type Envir.

Parallel1 2 93.0 21.5 Real-world Indoor
Parallel2 2 106.4 41.3 Real-world Indoor
Parallel3 2 130.7 39.1 Real-world Indoor

RandFlight 2 45.5 57.8 Real-world Indoor
Outdoor1 2 237.2 31 Real-world Outdoor

1) Metric Definitions: In this paper, two metrics are in-
volved, absolute trajectory error (ATE) and relative error
(RE), which are used to measure the global consistency and
relative estimation accuracy, respectively, of Omni-swarm. The
definition of ATE used in this paper is the same as that in [71].
A point worth noting is that the drift of each trajectory and the
relative state estimation error between trajectories estimated
by the state estimation are included in the ATE, i.e., the ATE
measures the global consistency and the relative localization
accuracy of the swarm.

The RE is used to characterize the relative state estimation
accuracy, which is defined as

REirotk =

(
1

N

N−1∑
t=0

‖∠
(

R̂vk t
k
T R̂vk t

i

)
‖2
) 1

2

REiposk =

(
1

N

N−1∑
t=0

‖
(

(R̂vk t
k
T (T̂vk t

i − T̂vk t
k)
)
‖2
) 1

2

,

REiposkaxis
=

(
1

N

N−1∑
t=0

|
(

(R̂vk t
k
T (T̂vk t

i − T̂vk t
k)
)
axis
|2
) 1

2

,

(14)
where REirotk and REiposk are the rotation and translation
relative error, respectively, of drone i estimated by drone k,
N is the total length of the trajectory, and ∠(·) is the angle of
the rotation error, which is defined in [71]. axis ∈ {x, y, z},
REiposkx

, REiposky
, REiposkz

are the translation relative errors
on the x, y and z axis, which helps the reader to establish
a more precise perception of the error. Due to the space
limitation, we use REiposk in the dataset comparison and only
use per-axis errors for inter-drone collision avoidance in real-
world environments. The ATE and RE in this paper are the
averaged results over the dataset and the units are in meters
and degrees, respectively.

2) Accuracy Comparison with Ground Truth: Table
VI shows the accuracy comparison on recorded datasets
(Parallel1, Parallel2, RandFlight). Parallel1 and Parallel2
are the parallel flight tasks and RandFlight is the double-
drone-random-target flight datasets task. The table contains
a comparison of four methods: 1) our previous method in
[18] (named Xu2020). 2) An approach with only map-based
measurements with VIO (named PGO), namely the pose graph
optimization method for CSLAM [16], [17], [26], [27]. 3)
A VIO-only method [36]. VIO does not have the ability
to perform relative positioning, so we use the ground truth
to align the coordinate system of different drones. 4) Our
proposed method. In addition, the table also consists of four
ablation studies: 1) remove UWB (named Without UWB), 2)

16

X

2
1

0
1

2

Y

1.0
0.5
0.0

0.5
1.0

1.5
2.0

Z

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Estimate 1
Estimate 2
Map-based Mea.
Vis. Mea.

(a)

2 1 0 1 2
X

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Y

Ground Truth 1
VIO 1
Estimate 1

(b)

2 1 0 1 2
X

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Y

Ground Truth 2
VIO 2
Estimate 2

(c)

Fig. 10: The estimated trajectories of the two drones in an indoor dataset. (a): The black arrows are the map-based measurements. The gray
arrows are the visual detection measurements. Only part of the measurements are shown in this figure for better visualization. (b)-(c): The
comparison of the ground truth trajectories (blue), the VIO trajectories (orange), and the estimated trajectories (green). The VIO trajectories
drift away from the ground truth trajectories, while the estimated trajectories closely follow the ground truth.

TABLE VI: Comparison of swarm state estimation methods on the indoor datasets. Init. time. is the average time for successful initialization
of state estimation. The overall best results in ATE and RE are in bold.

Dataset Metrics Xu2020 PGO VIO Only Proposed Without
UWB

Without
Tracking

Without
Map-based

Without
Outlier Rej.

Pos Rot Pos Rot Pos Rot Pos Rot Pos Rot Pos Rot Pos Rot Pos Rot

Parallel1 ATE 0.600 8.6◦ 0.149 2.5◦ 0.228 2.5◦ 0.127 2.2◦ 0.126 2.2◦ 0.149 2.3◦ 0.160 2.4◦ 0.360 2.6◦
RE 0.959 17.7◦ 0.114 3.3◦ 0.261 2.3◦ 0.062 2.3◦ 0.063 2.7◦ 0.100 3.7◦ 0.062 2.6◦ 0.064 3.2◦

Parallel2 ATE 0.351 3.2◦ 0.113 3.2◦ 0.225 3.0◦ 0.086 3.0◦ 0.094 3.1◦ 0.103 3.0◦ 0.225 3.1◦ 0.119 3.2◦
RE 0.241 4.7◦ 0.124 4.3◦ 0.230 4.3◦ 0.063 4.3◦ 0.083 4.0◦ 0.096 4.3◦ 0.069 4.2◦ 0.069 4.3◦

Parallel3 ATE 0.470 2.6◦ 0.153 1.8◦ 0.281 3.1◦ 0.119 1.8◦ 0.128 1.8◦ 0.134 1.7◦ 0.242 3.0◦ 0.535 5.1◦
RE 0.566 1.8◦ 0.130 1.7◦ 0.225 4.7◦ 0.072 1.8◦ 0.082 1.8◦ 0.081 1.8◦ 0.075 1.9◦ 0.143 4.0◦

RandFlight ATE 0.197 2.7◦ 0.153 1.8◦ 0.125 2.6◦ 0.088 2.7◦ 0.092 2.7◦ 0.101 2.7◦ 0.079 2.7◦ 0.165 5.9◦
RE 0.191 2.1◦ 0.130 1.7◦ 0.160 1.1◦ 0.069 1.3◦ 0.071 1.2◦ 0.078 1.4◦ 0.074 1.4◦ 0.147 9.8◦

TABLE VII: Comparison of initialization and observability of different methods. In the table, Init. Time is the time when the system is
initialized after boot-up, Init. Trials is the number of times the system attempted the initialization optimization, Succ. Rate is the success
rate of the initialization, and RE is the relative measurement error. ’-’ in the table means the method is not applicable to the dataset.

Dataset Xu2020 PGO Proposed
Init.

Time (s)
Init.

Trials
Succ.
Rate REpos RErot

Init.
Time (s)

Init.
Trials

Succ.
Rate REpos RErot

Init.
Time (s)

Init.
Trials

Succ.
Rate REpos RErot

Parallel1 52.1 3 0% 0.959 17.7◦ 1.36 1 100% 0.114 3.3◦ 1.29 1 100% 0.062 2.3◦

RandFlight1 84.4 3 100% 0.191 2.1◦ 1.36 1 100% 0.130 1.7◦ 1.43 1 100% 0.069 1.3◦

Parallel1
Outdoor 52.3 3 0% 1.047 3.2◦ - - - - - 1.31 1 100% 0.057 1.1◦

RandFlight1
Outdoor 83.1 3 100% 0.260 4.5◦ - - - - - 1.38 1 100% 0.111 3.0◦

remove visual drone tracking (named Without Tracking), 3)
remove map-based localization (named Without Map-based),
and 4) remove the outlier rejection and Huber norm (named
Without Outlier Rej.).

The proposed method has the best ATE and RE overall,
where the estimated trajectories of the proposed method on
Parallel1 are shown in Fig. 10. Our method also shows the
best performance on the simulated outdoor dataset in Table VII
(the details will be discussed in Sect. VII-C3), which proves
that Omni-swarm has the best adaptation to the environment.
Xu2020 nearly fails on the Parallel1 and Parallel3 datasets
because it lacks observability in the parallel flight task. The
reason that relative state estimation of Xu2020 does not fail on
Parallel2 is that the drone position control errors in Parallel2
cause 15 cm of relative motion between the drones, which
causes the Xu2020 approach to obtain an inaccurate estimate
with relative motion. However, the visual detection of Xu2020
does not function on this dataset due to the FoV limitation.
This makes the final relative localization accuracy only reach
0.241 m. The same situation applies to the RandFlight dataset,
where UWB-odometry in Xu2020 establishes a rough relative
estimate, but the method does not yield accurate relative

measurements due to the FoV limitation. As a comparison,
Without Map-based is similar to Xu2020 but has the new
omnidirectional VDT module and initialization, and it has
much better relative localization accuracy than Xu2020. This
illustrates the significance of the omnidirectional front-end and
initialization in this paper.

On all datasets, PGO obtains accuracy in the order of
decimeters, but we will show the drawbacks of PGO in outdoor
environments later. The VIO-only method is not as accurate as
PGO and the proposed methods, and for this method we need
to manually align the coordinate system of different drones at
the very beginning.

From the ablation studies Without UWB and Without Track-
ing, we can see the contribution of these two types of
factors (distance and visual detection factors) to system ac-
curacy. In addition, good relative localization accuracy can
be obtained without using the map-based localization (With-
out Map-based), which is especially important for feature-
poor outdoor environments. However, the global consistency
(ATE) deteriorates to VIO-Only in this case. This comparison
demonstrates the importance of map-based localization for
global consistency. Finally, Without Outlier Rej. is two to four

17

times less accurate than the proposed method in some datasets,
demonstrating the benefits of introducing the outlier rejection
module and Huber norm.

3) Observablility analysis and initialization: We conduct
comparative experiments to verify the improvement in the
observability of Omni-swarm relative to previous works. The
experiments give a comparison of Omni-swarm with the
PGO and Xu2020 methods in terms of initialization perfor-
mance under different environments. The comparison shows
the initialization of the indoor environment and the outdoor
environment under parallel and random flight. The comparison
results are shown in Table VII.

We argue that open outdoor scenes do not have sufficient
feature points for map-based localization. While VIO still
works in this case, it is not as accurate as it is in indoor envi-
ronments. On this basis, we use the Paralell1 and RandFlight
datasets to simulate outdoor datasets with ground truth, named
Paralell1Out and RandFlightOut in Table VII. We restrict
VINS-Fisheye to use ground features and limit surrounding
features (no more than 20), and turn off the map-based
localization to simulate feature-poor outdoor environments.

As shown in Table VII, our proposed method has accurate
relative localization on all indoor and outdoor datasets, which
means that it is observable in all cases. In indoor environments,
map-based localization can be used for initialization (Sect.
V-E1), while visual detection initialization (Sect. V-E2) is
used for indoor and outdoor environments. The PGO method
also has fair relative localization accuracy indoors but is not
applicable to open outdoor environments. The Xu2020 method
has a fair relative localization accuracy on the dataset with
relative motion (RandFlight) in indoor and outdoor cases due
to its use of UWB-odometry fusion, which is observable in this
case. However, on the parallel flight dataset (neither indoor or
outdoor), the relative localization of this method is considered
as having failed with a huge relative localization error.

Table VII also shows the initialization quantitatively. The
proposed method can be initialized quickly before the aerial
swarm takes off in all cases and requires only one optimiza-
tion. The PGO method can also be quickly initialized in indoor
environments with the help of surrounding feature points, but it
does not work in outdoor environments. The Xu2020 method,
on the other hand, does not succeed in initializing the correct
state estimate on the parallel flight dataset. On the RandFlight
dataset, Xu2020 is able to initialize successfully, but it requires
a period after the aerial swarm has flown to complete the
process. This period brings the issue of flight safety. As a
reference, the take-off time of these datasets can be found in
Table V.

4) Impact of the random deletion mechanism: Table VIII
shows the comparison between the random deletion proposed
in Sect. V-A (RandDel in the table) and the other two deletion
mechanisms, an approach without any deletion mechanism
(NoDel in the table), and the sliding window mechanism used
in [18] (SldWin in the table), which deletes the first frame
when swarm keyframes in G are more than mmax. In the
comparison, mmax is set to 100. The Parallel1 and Parallel2
dataset generates 255 and 321 swarm keyframes, respectively.

In the table, all three approaches have similar relative

TABLE VIII: Accuracy comparison of different deletion mecha-
nisms. Avg. Time is the averaged solving time of the graph-based
optimization.

Dataset Metrics NoDel SldWin RandDel
Pos Rot Pos Rot Pos Rot

Parallel1
ATE 0.091 3.2◦ 0.153 3.3◦ 0.086 3.0◦
RE 0.066 4.4◦ 0.067 4.4◦ 0.063 4.3◦

Avg Time. 21.00ms 12.11ms 14.36ms

Parallel2
ATE 0.115 1.8◦ 0.175 2.3◦ 0.119 1.8◦
RE 0.072 1.8◦ 0.073 1.8◦ 0.072 1.8◦

Avg Time. 21.51ms 11.62ms 13.86ms

40 20 0
X

0

10

20

30

40

Y

Map-based Mea.
Vis. Mea.
Final 1
Real-time 1
Final 2
Real-time 2

(a)

40 20 0
X

0

10

20

30

40

Y

VIO 1
Final 1
Real-time 1

(b)

40 20 0
X

0

10

20

30

40

Y

VIO 2
Final 2
Real-time 2

(c)

Fig. 11: The estimated trajectories and the VIO trajectories of
the two drones in an outdoor dataset. For better visualization of
the global consistency, the real-time estimated trajectories and final
estimated trajectories are shown in the figures. (a) The estimated
trajectories of two drones with the map-based measurements and
visual detection measurements. The black lines are the map-based
measurements. The gray lines are the detection measurements. (b)-
(c) The detailed comparison of the estimated trajectories (blue) and
the VIO trajectories (orange).

measurement accuracy (measured using RE), showing the
deletion mechanism has no effect on the relative state esti-
mates. Nevertheless, the NoDel approach has the best global
consistency (measured using ATE), RandDel is slightly worse
than NoDel, and the worst approach, SldWin, is close to the
level of VIO-only in Table VI. Concluding, RandDel has the
same optimization speed compared to SldWin but is 50% faster
than NoDel.

D. Evaluation on Outdoor Dataset
We also evaluate Omni-swarm on an outdoor dataset to

verify that Omni-swarm is flexible in many scenarios. Fig. 11
shows the estimation trajectories on a double-drone outdoor
dataset. The real-time trajectory in the figure is the output
of state estimation in real-time with forward propagation
(Eq. 12). The Final trajectory is the final estimate poses of
keyframes in the G at the end of the task.

As a result of a 235-meter-run in the outdoor environment,
the estimated states drift only 1.9 m from the start point,
which is 0.8% of the trajectory length, showing that the global
consistency is ensured. As a comparison, the original VIO
trajectories’ drifts averaged 6.35 m from the start point, which
is 3.3 times bigger compared to our proposed method. The
real-time trajectories in the figure have a noticeable jump,
while the final trajectories do not. This is because Omni-
swarm eliminates the drifting error of VIO at this instant
after detecting a map-based measurement, so the real-time
estimation jumps to a more global consistency estimate. On
the other hand, the final trajectory is smoother without this
jump because it is a whole trajectory estimated result.

E. Inter-drone collision avoidance experiments
In the inter-drone collision avoidance experiments, each

drone performs independent swarm state estimation in real-

18

X

2
1

0
1

2
3

Y

2

1

0

1

2

Z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Estimate 1
Estimate 2
Estimate 3
Estimate 5
Map-based Mea.
Vis. Mea.

(a)

1.0 1.5 2.0 2.5 3.0 3.5
X

1.5

1.0

0.5

0.0

0.5

1.0

Y

Ground Truth 1
Estimation 1

(b)

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
X

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Y

Ground Truth 2
Estimation 2

(c)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Y

Ground Truth 3
Estimation 3

(d)

1.0 0.5 0.0 0.5 1.0
X

2.0

1.5

1.0

0.5

0.0

0.5

Y

Ground Truth 4
Estimation 4

(e)

Fig. 12: These figures show the estimated trajectories,and ground truth trajectories a four-drone inter-drone collision avoidance experiment.
(a): The estimated trajectories of the drones. The black lines are the map-based measurements. The gray lines are the detection measurements.
Only part of the measurements is shown in this figure for better visualization. (b)-(e): The detailed comparison of the estimated trajectories
(blue) and the ground truth trajectories (orange).
TABLE IX: Accuracy comparison on three-drone and four-drone
inter-drone collision avoidance experiments. Traj. Len. is the averaged
trajectory length of the experiment.

Task Proposed Method VIO-Only
x y z x y z

Three
Drone

Traj. Len. 27.8
REx,y,z 0.076 0.074 0.083 0.064 0.061 0.030
RErot 1.20° 0.8°
ATEpos 0.103 0.078
ATErot 0.427° 0.096°

Four
Drone

Traj. Len. 19.9
REx,y,z 0.065 0.056 0.088 0.070 0.131 0.064
RErot 1.46° 1.2°
ATEpos 0.103 0.091
ATErot 0.399° 0.160°

time and uses the estimated results for inter-drone collision
avoidance and planning, which follows Sect. VI-F. Table IX
shows the accuracy of real-time estimated states in the inter-
drone collision avoidance experiments, and Fig. 12 shows
the estimated trajectories of a four-drone inter-drone collision
avoidance experiment. This experiment successfully validates
the practical value of Omni-swarm in a real-world environ-
ment. One may notice that VIO has better performance on
some data. This is because in short flight tasks (19-30 m as
listed in the table), VIO drifts less and therefore has higher
accuracy. However, our proposed method outperforms VIO
on all datasets in the previous comparison, where drones
have longer trajectories. Additionally, VIO-only requires the
aerial swarm to be initialized using ground truth or in using
predefined starting points, and its error increases with flight
range, limiting the practical value of this approach.

F. Computation Time

Table X shows the computation time of the main compo-
nents of Omni-swarm in experiments. The first P&P scenario is
the four drone plug-and-play experiment in Sect. VII-B1. The
second C&3 scenario is the three drone inter-drone collision
avoidance experiment in Sect. VII-E. The C&3 scenario’s
back-end computation time is much longer than that of P&P
because it is a more complex task. The table shows that
Omni-swarm is able to achieve real-time performance with
the computational frequency shown in Table II.

VIII. CONCLUSION AND FUTURE WORK

This paper introduced Omni-swarm, a decentralized om-
nidirectional visual-inertial-UWB state estimation system for
aerial swarms. Compared to previous works, the proposed

TABLE X: The average computation time on each component in
real-world experiments on the onboard computer. The units in this
table are milliseconds. The abbreviations VINSF, VINSB, Det, Trk.
LoopDet., and Opti. are the same as in Table II. PCM is the PCM
outlier rejection.

Scenario VINSF VINSB Det & Trk PoseEsti. Desc. Loop
Det. Init. PCM Opti.

P&P 12.1 43.8 32.8 24.1 273.7 48.9 8.6 0.8 6.2
C&3 19.5 82.1 41.4 16.6 262.6 28.1 23.7 110.5 155.5

approach addresses the complicated initialization issue, ob-
servability issue caused by a restricted FoV, and global con-
sistency issue. To demonstrate the feasibility and effective-
ness of Omni-swarm, we tested it by extensive aerial swarm
flight experiments. Compared with ground truth data from
the motion capture system, the state estimation results reach
centimeter-level accuracy on relative estimation while ensuring
global consistency. With Omni-swarm, formation flights in
various complex environments are no longer impossible. Inter-
drone collision avoidance is successfully demonstrated based
on Omni-swarm. We believe that Omni-swarm can be widely
adopted in a variety of scenarios and on multiple scales.

However, our system is also inevitably characterized by a
number of shortcomings that need to be improved in future
work, including: 1) The dependence on camera intrinsic and
extrinsic calibration, which is a common problem for all
visual SLAM systems. In the future, we will try to develop
online fault detection and calibration to further improve the
robustness. 2) Scalability. Our current back-end algorithm
is O(n2) for the growth of the scale of the swarm, which
makes it difficult to apply Omni-swarm to larger-scale swarms
(more than 100 drones). In the future, we will try to extend
Omni-swarm to large aerial swarms. 3) Communication range.
Current work is focused on state estimation, and the network
setup currently limits our aerial swarm to work within a short
distance (22.4 m) from each other. In the future, we will extend
the communication distance by deploying routing algorithms,
e.g., Batman-adv [72], and upgrading communication devices.

In the future, we will deploy Omni-swarm to real-world
applications and also use it to build the dense global map to
exploit the advantages of Omni-swarm fully.

REFERENCES

[1] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and effi-
cient quadrotor trajectory generation for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.

[2] K. Wang, F. Gao, and S. Shen, “Real-time scalable dense surfel
mapping,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom. (ICRA),
2019.

19

[3] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular
visual-inertial state estimator,” IEEE Trans. Robot. (TRO), vol. 34, no. 4,
pp. 1004–1020, 2018.

[4] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Trans. Robot.
(TRO), vol. 33, no. 5, pp. 1255–1262, 2017.

[5] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins:
A research platform for visual-inertial estimation,” in Proc. of the IEEE
International Conference on Robotics and Automation, Paris, France,
2020.

[6] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, no. 9. Berkeley, CA,
2014, pp. 1–9.

[7] J. Lin and F. Zhang, “Loam livox: A fast, robust, high-precision lidar
odometry and mapping package for lidars of small fov,” in Proc. of
the IEEE Intl. Conf. on Robot. and Autom. (ICRA). IEEE, 2020, pp.
3126–3131.

[8] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm:
A large nano-quadcopter swarm,” in Proc. of the IEEE Intl. Conf. on
Robot. and Autom. (ICRA). IEEE, 2017, pp. 3299–3304.

[9] A. Ledergerber, M. Hamer, and R. D’Andrea, “A robot self-localization
system using one-way ultra-wideband communication,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intell. Robots and Syst.(IROS). IEEE, 2015,
pp. 3131–3137.

[10] A. Jaimes, S. Kota, and J. Gomez, “An approach to surveillance an area
using swarm of fixed wing and quad-rotor unmanned aerial vehicles
uav (s),” in 2008 IEEE International Conference on System of Systems
Engineering. IEEE, 2008, pp. 1–6.

[11] S. Moon, Y. Choi, D. Kim, M. Seung, and H. Gong, “Outdoor swarm
flight system based on RTK-GPS,” Journal of KIISE, vol. 43, no. 12,
pp. 1315–1324, 2016.

[12] P. Petráček, V. Krátkỳ, M. Petrlı́k, T. Báča, R. Kratochvı́l, and M. Saska,
“Large-scale exploration of cave environments by unmanned aerial
vehicles,” vol. 6, no. 4, pp. 7596–7603, 2021.

[13] A. J. Smith and G. A. Hollinger, “Distributed inference-based multi-
robot exploration,” Auton. Robots, vol. 42, no. 8, pp. 1651–1668, 2018.

[14] P. Zhu, Y. Yang, W. Ren, and G. Huang, “Cooperative visual-inertial
odometry,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom. (ICRA),
2021.

[15] P. Zhu, P. Geneva, W. Ren, and G. Huang, “Distributed visual-inertial
cooperative localization,” Proc. of the IEEE/RSJ Intl. Conf. on Intell.
Robots and Syst.(IROS), 2021.

[16] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen,
and F. Dellaert, “Distributed mapping with privacy and communication
constraints: Lightweight algorithms and object-based models,” Intl. J.
Robot. Research (IJRR), vol. 36, no. 12, pp. 1286–1311, 2017.

[17] P.-Y. Lajoie, B. Ramtoula, Y. Chang, L. Carlone, and G. Beltrame,
“DOOR-SLAM: Distributed, online, and outlier resilient slam for robotic
teams,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1656–
1663, 2020.

[18] H. Xu, L. Wang, Y. Zhang, K. Qiu, and S. Shen, “Decentralized visual-
inertial-UWB fusion for relative state estimation of aerial swarm,” in
Proc. of the IEEE Intl. Conf. on Robot. and Autom. (ICRA). IEEE,
2020, pp. 8776–8782.

[19] K. Guo, Z. Qiu, W. Meng, L. Xie, and R. Teo, “Ultra-wideband based
cooperative relative localization algorithm and experiments for multiple
unmanned aerial vehicles in gps denied environments,” International
Journal of Micro Air Vehicles, vol. 9, no. 3, pp. 169–186, 2017.

[20] K. Guo, X. Li, and L. Xie, “Ultra-wideband and odometry-based
cooperative relative localization with application to multi-uav formation
control,” IEEE Transactions on Cybernetics, 2019.

[21] T. Ziegler, M. Karrer, P. Schmuck, and M. Chli, “Distributed Formation
Estimation via Pairwise Distance Measurements,” IEEE Robotics and
Automation Letters, 2021.

[22] V. Walter, N. Staub, A. Franchi, and M. Saska, “Uvdar system for visual
relative localization with application to leader–follower formations of
multirotor uavs,” IEEE Robotics and Automation Letters, vol. 4, no. 3,
pp. 2637–2644, 2019.

[23] T. Nguyen, K. Mohta, C. J. Taylor, and V. Kumar, “Vision-based Multi-
MAV Localization with Anonymous Relative Measurements Using
Coupled Probabilistic Data Association Filter,” 2020.

[24] N. Piasco, J. Marzat, and M. Sanfourche, “Collaborative localization and
formation flying using distributed stereo-vision,” in Proc. of the IEEE
Intl. Conf. on Robot. and Autom. (ICRA). IEEE, 2016, pp. 1202–1207.

[25] M. W. Achtelik, S. Weiss, M. Chli, F. Dellaerty, and R. Siegwart,
“Collaborative stereo,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell.

Robots and Syst.(IROS). IEEE, 2011, pp. 2242–2248.
[26] A. Cunningham, M. Paluri, and F. Dellaert, “DDF-SAM: Fully dis-

tributed SLAM using constrained factor graphs,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intell. Robots and Syst.(IROS). IEEE, 2010,
pp. 3025–3030.

[27] A. Cunningham, V. Indelman, and F. Dellaert, “DDF-SAM 2.0: Con-
sistent distributed smoothing and mapping,” in Proc. of the IEEE Intl.
Conf. on Robot. and Autom. (ICRA). IEEE, 2013, pp. 5220–5227.

[28] L. Wang, D. Cheng, F. Gao, F. Cai, J. Guo, M. Lin, and S. Shen, “A
Collaborative Aerial-Ground Robotic System for Fast Exploration,” in
Proc. of the Intl. Sym. on Exp. Robot. (ISER), 2018, pp. 59–71.

[29] N. Michael, S. Shen, K. Mohta, V. Kumar, K. Nagatani, Y. Okada,
S. Kiribayashi, K. Otake, K. Yoshida, K. Ohno et al., “Collaborative
mapping of an earthquake damaged building via ground and aerial
robots,” in Field and Service Robotics. Springer, 2014, pp. 33–47.

[30] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós, “ORB-SLAM3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Trans. Robot. (TRO), 2021.

[31] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular slam with map
reuse,” IEEE Robotics and Automation Letters (RA-L), vol. 2, no. 2, pp.
796–803, 2017.

[32] V. Usenko, N. Demmel, D. Schubert, J. Stückler, and D. Cremers,
“Visual-inertial mapping with non-linear factor recovery,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 422–429, 2019.

[33] T. Qin, S. Cao, J. Pan, and S. Shen, “A general optimization-based
framework for global pose estimation with multiple sensors,” arXiv
preprint arXiv:1901.03642, 2019.

[34] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual
inertial odometry using a direct ekf-based approach,” in 2015 IEEE/RSJ
international conference on intelligent robots and systems (IROS).
IEEE, 2015, pp. 298–304.

[35] A. Weinstein, A. Cho, G. Loianno, and V. Kumar, “Visual inertial
odometry swarm: An autonomous swarm of vision-based quadrotors,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1801–1807,
2018.

[36] P. C. Lusk, X. Cai, S. Wadhwania, A. Paris, K. Fathian, and J. P. How,
“A Distributed Pipeline for Scalable, Deconflicted Formation Flying,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5213–5220,
2020.

[37] T.-M. Nguyen, Z. Qiu, T. H. Nguyen, M. Cao, and L. Xie, “Persistently
excited adaptive relative localization and time-varying formation of robot
swarms,” IEEE Trans. Robot. (TRO), vol. 36, no. 2, pp. 553–560, 2019.

[38] T.-M. Nguyen, Z. Qiu, T. H. Nguyen, and et al., “Distance-Based Coop-
erative Relative Localization for Leader-Following Control of MAVs,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3641–3648,
2019.

[39] T. Qin, P. Li, and S. Shen, “Relocalization, global optimization and map
merging for monocular visual-inertial slam,” in Proc. of the IEEE Intl.
Conf. on Robot. and Autom. (ICRA). IEEE, 2018, pp. 1197–1204.

[40] K. Qiu, T. Liu, and S. Shen, “Model-based global localization for aerial
robots using edge alignment,” IEEE Robotics and Automation Letters,
vol. 2, no. 3, pp. 1256–1263, 2017.

[41] F. Dellaert, M. Kaess et al., “Factor Graphs for Robot Perception,”
Foundations and Trends® in Robotics, vol. 6, no. 1-2, pp. 1–139, 2017.

[42] W. Gao and S. Shen, “Dual-fisheye omnidirectional stereo,” in Proc. of
the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst.(IROS), 2017, pp.
6715–6722.

[43] W. Gao, K. Wang, W. Ding, F. Gao, T. Qin, and S. Shen, “Autonomous
aerial robot using dual-fisheye cameras,” J. Field Robot. (JFR), vol. 37,
no. 4, pp. 497–514, 2020.

[44] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[45] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[46] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in Proc. of the IEEE
Intl. Conf. on Pattern Recognition. IEEE, 2010, pp. 2544–2550.

[47] M. Betke and Z. Wu, “Data Association for Multi-Object Visual Track-
ing,” Synthesis Lectures on Computer Vision, vol. 6, no. 2, pp. 9–11,
2016.

[48] P. Konstantinova, A. Udvarev, and T. Semerdjiev, “A Study of a Target
Tracking Algorithm Using Global Nearest Neighbor Approach,” in
Proceedings of the International Conference on Computer Systems and
Technologies (CompSysTech’03), 2003, pp. 290–295.

[49] A. Sinha, Z. Ding, T. Kirubarajan, and M. Farooq, “Track Quality

20

Based Multitarget Tracking Approach for Global Nearest-Neighbor
Association,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 48, no. 2, pp. 1179–1191, 2012.

[50] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[51] D. P. Bertsekas and D. A. Castanon, “A Forward/Reverse Auction
Algorithm for Asymmetric Assignment Problems,” Computational Op-
timization and Applications, vol. 1, no. 3, pp. 277–297, 1992.

[52] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis, “6-
DoF Object Pose from Semantic Keypoints,” in Proc. of the IEEE Intl.
Conf. on Robot. and Autom. (ICRA). IEEE, 2017, pp. 2011–2018.

[53] M. Pavliv, F. Schiano, C. Reardon, D. Floreano, and G. Loianno,
“Tracking and Relative Localization of Drone Swarms With a Vision-
Based Headset,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 1455–1462, 2021.

[54] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n)
solution to the pnp problem,” International journal of computer vision,
vol. 81, no. 2, p. 155, 2009.

[55] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD:
CNN architecture for weakly supervised place recognition,” in Proc. of
the IEEE Intl. Conf. on Pattern Recognition, 2016, pp. 5297–5307.

[56] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From coarse
to fine: Robust hierarchical localization at large scale,” in Proc. of the
IEEE Intl. Conf. on Pattern Recognition, 2019, pp. 12 716–12 725.

[57] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-
supervised interest point detection and description,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2018, pp. 224–236.

[58] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547,
2019.

[59] Z. Zhang and A. R. Hanson, “3d reconstruction based on homography
mapping,” Proc. ARPA96, pp. 1007–1012, 1996.

[60] J. G. Mangelson, D. Dominic, R. M. Eustice, and R. Vasudevan,
“Pairwise consistent measurement set maximization for robust multi-
robot map merging,” in Proc. of the IEEE Intl. Conf. on Robot. and
Autom. (ICRA). IEEE, 2018, pp. 2916–2923.

[61] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an Open-
Source Library for Real-Time Metric-Semantic Localization and Map-
ping,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom. (ICRA).
IEEE, 2020, pp. 1689–1696.

[62] B. Pattabiraman, M. M. A. Patwary, A. H. Gebremedhin, W.-k. Liao,
and A. Choudhary, “Fast algorithms for the maximum clique problem on
massive graphs with applications to overlapping community detection,”
Internet Mathematics, vol. 11, no. 4-5, pp. 421–448, 2015.

[63] P. J. Huber, “Robust estimation of a location parameter,” in Break-
throughs in Statistics. Springer, 1992, pp. 492–518.

[64] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres Solver,” 3 2022.
[Online]. Available: https://github.com/ceres-solver/ceres-solver

[65] B. Zhou and N. Bose, “Multitarget tracking in clutter: Fast algorithms
for data association,” IEEE Transactions on aerospace and electronic
systems, vol. 29, no. 2, pp. 352–363, 1993.

[66] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai, “IEEE 802.11 Wireless
Local Area Networks,” IEEE Communications magazine, vol. 35, no. 9,
pp. 116–126, 1997.

[67] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight commu-
nications and marshalling,” in 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2010, pp. 4057–4062.

[68] X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “Ego-swarm: A fully
autonomous and decentralized quadrotor swarm system in cluttered
environments,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom.
(ICRA). IEEE, 2021, pp. 4101–4107.

[69] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Trans. Robot.
(TRO), 2021.

[70] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” arXiv preprint arXiv:1702.08734, 2017.

[71] Z. Zhang and D. Scaramuzza, “A Tutorial on Quantitative Trajectory
Evaluation for Visual(-Inertial) Odometry,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 7244–7251.

[72] D. Seither, A. König, and M. Hollick, “Routing performance of Wireless
Mesh Networks: A practical evaluation of BATMAN advanced,” in 2011
IEEE 36th Conference on Local Computer Networks. IEEE, 2011, pp.

897–904.
Hao Xu received the B.Sc. degree in Physics from
the University of Science and Technology of China,
Hefei, China, in 2016. He is currently working
toward the Ph.D. degree with the Hong Kong Univer-
sity of Science and Technology, Hong Kong, under
the supervision of Prof. Shaojie Shen. His research
interests include unmanned aerial vehicles, aerial
swarm, state estimation, sensor fusion, localization
and mapping.

Yichen Zhang received the B.Eng. degree in com-
puter engineering and B.B.A in general business
management in 2020 from the Hong Kong Univer-
sity of Science and Technology, Hong Kong, where
he is currently working toward the Ph.D. degree
in electronic and computer engineering under the
supervision of Prof. S. Shen. His research interests
include motion planning, dense mapping and active
SLAM for autonomous robots.

Boyu Zhou received the B.Eng. degree in mechani-
cal engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2018. He is currently working
toward the Ph.D. degree in electronic and computer
engineering with the Hong Kong University of Sci-
ence and Technology, Hong Kong. His research in-
terests include aerial robots, autonomous navigation,
motion planning, dense mapping, exploration and
swarm.

Luqi Wang received the B.Eng. degree in computer
engineering and aerospace engineering in 2018 from
the Hong Kong University of Science and Tech-
nology, Hong Kong, where he is currently working
toward the Ph.D. degree in electronic and com-
puter engineering. His research interests include con-
trol, navigation, and path planning for autonomous
robots.

Xinjie Yao received her B.Eng in Computer Engi-
neering from the Hong Kong University of Science
and Technology in 2020. She received her M.S. in
Robotics in 2022 from Carnegie Mellon University.
Her research interests are in robotics, focusing on
navigation, autonomy, and human-robot interaction.

Guotao Meng received his B.Eng. degree in Au-
tomation from the School of Electronic and Infor-
mation Engineering of Xi’an Jiaotong University in
2018. He is working towards his Ph.D. degree at
the Visual Intelligence Laboratory, the Department
of Electronic and Computer Engineering, the Hong
Kong University of Science and Technology. His
research interests include image processing, deep
learning, computer vision and robotics.

Shaojie Shen received the B.Eng. degree in elec-
tronic engineering from the Hong Kong University
of Science and Technology, Hong Kong, in 2009,
and the M.S. degree in robotics and the Ph.D.
degree in electrical and systems engineering from the
University of Pennsylvania, Philadelphia, PA, USA,
in 2011 and 2014, respectively.

He was with the Department of Electronic and
Computer Engineering, Hong Kong University of
Science and Technology in September 2014 as an
Assistant Professor, and was promoted to an Asso-

ciate Professor in 2020. His research interests include the areas of robotics
and unmanned aerial vehicles, with focus on state estimation, sensor fusion,
computer vision, localization and mapping, and autonomous navigation in
complex environments.

